
Installer

Jens Tröger

Installer ii

Copyright © 1999/2000 by Jens Tröger

Installer iii

COLLABORATORS

TITLE :

Installer

ACTION NAME DATE SIGNATURE

WRITTEN BY Jens Tröger August 24, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Installer iv

Contents

1 Installer 1

1.1 The Installer Language Programming Guide . 1

1.2 Introduction . 2

1.3 That`s me ;) . 3

1.4 C= Installer vs. InstallerNG . 3

1.5 Versions if the Installer . 4

1.6 The installation of the Installer . 4

1.7 What’s new for the InstallerNG . 4

1.8 ’Hello World’ - the first working program . 8

1.9 The language - an overview . 8

1.10 How can I start the Installer . 10

1.11 Running from Shell/CLI . 10

1.12 Running from WB . 11

1.13 The types of the Installer . 11

1.14 The Errors . 11

1.15 The Installer Language . 12

1.16 The symbols of the language . 13

1.17 The layout of the language . 15

1.18 Builtin variables . 16

1.19 Builtin functions . 18

1.20 Advanced features . 26

1.21 Some theoretical stuff . 28

1.22 Very important notes!!! . 29

1.23 All functions in alphabetical order . 30

1.24 ABORT . 36

1.25 ADD . 37

1.26 AND . 37

1.27 ASKDIR . 38

1.28 ASKFILE . 38

1.29 ASKSTRING . 39

Installer v

1.30 ASKNUMBER . 40

1.31 ASKCHOICE . 40

1.32 ASKOPTIONS . 41

1.33 ASKBOOL . 42

1.34 ASKDISK . 42

1.35 BEEP . 43

1.36 BITAND . 43

1.37 BITOR . 44

1.38 BITXOR . 44

1.39 BITNOT . 45

1.40 CAST-INT . 45

1.41 CAST-STRING . 46

1.42 CAT . 46

1.43 CLOSEMEDIA . 47

1.44 CLOSEWBOBJECT . 47

1.45 COMPARE . 48

1.46 COMPLETE . 49

1.47 COPYFILES . 49

1.48 COPYLIB . 50

1.49 DATABASE . 51

1.50 DEBUG . 53

1.51 DELAY . 53

1.52 DELETE . 54

1.53 DIV . 55

1.54 EARLIER . 55

1.55 EFFECT . 56

1.56 EQU . 56

1.57 EXECUTE . 57

1.58 EXIT . 58

1.59 EXISTS . 58

1.60 EXPANDPATH . 59

1.61 FILEONLY . 59

1.62 FINDBOARD . 60

1.63 FLUSHLIBS . 60

1.64 FOREACH . 61

1.65 GE . 62

1.66 GETASSIGN . 62

1.67 GETDEVICE . 63

1.68 GETDISKSPACE . 63

Installer vi

1.69 GETENV . 64

1.70 GET-PROPERTY . 65

1.71 GETSIZE . 65

1.72 GETSUM . 66

1.73 GETVERSION . 66

1.74 GT . 67

1.75 ICONINFO . 68

1.76 IF . 69

1.77 IN . 69

1.78 LE . 70

1.79 LET . 70

1.80 LT . 71

1.81 MAKEASSIGN . 72

1.82 MAKEDIR . 72

1.83 MESSAGE . 73

1.84 MUL . 73

1.85 NE . 74

1.86 NOP . 75

1.87 NOT . 75

1.88 ONERROR . 76

1.89 OR . 76

1.90 OPENWBOBJECT . 77

1.91 PATHONLY . 78

1.92 PATMATCH . 78

1.93 PROCEDURE . 79

1.94 PROTECT . 79

1.95 PUT-PROPERTY . 80

1.96 QUERYDISPLAY . 81

1.97 RANDOM . 82

1.98 READ-PROPERTY-OBJECT . 82

1.99 REBOOT . 83

1.100REMOVE-PROPERTY . 83

1.101RENAME . 84

1.102RETRACE . 85

1.103REXX . 86

1.104RUN . 86

1.105SAVE-PROPERTY-OBJECT . 87

1.106SELECT . 87

1.107SET . 88

Installer vii

1.108SETENV . 88

1.109SETMEDIA . 89

1.110SHIFTLEFT . 90

1.111SHIFTRIGHT . 90

1.112SHOWMEDIA . 91

1.113SHOWWBOBJECT . 92

1.114SIMULATE-ERROR . 93

1.115STARTUP . 94

1.116STRLEN . 94

1.117SUB . 95

1.118SUBSTR . 95

1.119SWING . 96

1.120TACKON . 96

1.121TEXTFILE . 97

1.122TOOLTYPE . 97

1.123TRACE . 98

1.124TRANSCRIPT . 99

1.125TRAP . 99

1.126UNTIL . 100

1.127USER . 101

1.128WELCOME . 101

1.129WHILE . 102

1.130WORKING . 102

1.131XOR . 103

1.132ALL . 103

1.133APPEND . 104

1.134ASSIGNS . 104

1.135BACK . 104

1.136CHOICES . 104

1.137COMMAND . 105

1.138CONFIRM . 105

1.139DEFAULT . 105

1.140DELOPTS . 106

1.141DEST . 106

1.142DISK . 106

1.143FILES . 107

1.144FONTS . 107

1.145HELP . 107

1.146INCLUDE . 108

Installer viii

1.147INFOS . 108

1.148NEWNAME . 108

1.149NEWPATH . 108

1.150NOGAUGE . 109

1.151NOPOSITION . 109

1.152NOREQ . 109

1.153OPTIONAL . 110

1.154PATTERN . 110

1.155PROMPT . 110

1.156QUIET . 111

1.157RANGE . 111

1.158SAFE . 111

1.159SETTOOLTYPE . 111

1.160SETDEFAULTTOOL . 112

1.161SETSTACK . 112

1.162SOURCE . 112

1.163SWAPCOLORS . 113

Installer 1 / 113

Chapter 1

Installer

1.1 The Installer Language Programming Guide

The Installer Language Programming Guide

© 1999/2000 by Jens Tröger
for copyright information and licence rules, please read the InstallerNG
guide and the .LICENCE file (both included in this distribution)

Preliminaries

Introduction
What’s this thing about

Author
The author of this guide and the InstallerNG

C= Installer vs. InstallerNG
Old contra new

Versions of Installer
Keep this in mind!

Installation
Installing the Installer

First Steps

Hello World
Our first working programm

The language
Introduction to the language

Starting the Installer
How to start this tool

Programming secrets

Symbols
The bricks of a script

Installer 2 / 113

Syntax
Rules for programming

Builtin variables
The predefined variables

Function reference
All the functions of the Installer

Custom functions
How to use custom functions

Enhanced string formatting
Builting strings from arguments

Grouping of functions
Joining several functions to a block

Types
The different types

Errors
Compilation errors

References

Formal information
Some theoretical stuff

You should read this
This has to be respected

All functions
All functions in alphabetical order

1.2 Introduction

Today, the installation of software products can be a very complex
procedure. This is caused by the sometimes large set of different files
or a very lowlevel intervention into the systems resources. Especially
for novice users this process can be difficult and the system may be
destroyed (worst case...).

This was the motivation for Commodore to build a tool, which covers
the installation process and offers an easy to use and graphical
interface. This thing was called the Installer. The user just tells where
and what to install and the Installer cares for the installation process
itself, i.e. the Installer checks for the versions, copies the files to
the correct destinations, sets up a correct environment for the installed
tool and so on. The user can choose, whether he wants an easy installation
(means, as less as possible queries) or if he wants to get notified for
every action.

Installer 3 / 113

If you are a programmer and you want to provide your user such an easy
installation, you must write an Installer-Script. This script is
simply a textfile and contains a programm, written in a special language.
This language is simple and offers very much functions for querying the user,
for setting and getting system properties, for file handling, string ←↩

manipulation
and, last but not least, a lot of mathematical functions. Furthermore, put
an icon into your archive, which contains special tooltypes (for tooltypes
please refer to your workbench guide) for the Installer. When the user
double-clicks this icon, the Installer will get started and then looks for
your script to execute it.

This guide will introduce you the Installer usage itself and the script
language. You should have programmed and, additionally, should have some
knowledge about the AmigaDOS. If not, use this course for starting your
programming career....

1.3 That`s me ;)

Snail Mail
Jens Tröger
Hochschulstraße 48, 11-4
01069 Dresden
Germany

Phone
(+49) 351/4701609

E-Mail
jt18@irz.inf.tu-dresden.de

WWW
http://www.inf.tu-dresden.de/~jt18
http://www.savage.light-speed.de

IRC
Nick: _savage
Channel: #amigager

1.4 C= Installer vs. InstallerNG

If you know the C= Installer, you should have noticed its ugly ←↩
interface,

the amount of failures and the bad useability. If you have already programmed
the C= Installer, you know that the language isn’t up to date anymore. Thats why
I started to implement a new Installer: the InstallerNG. This new Installer
looks really nice, has nearly no bugs and runs very stable. For the programmer,
it offers new and also enhanced functions. For a list of all the new things
look

here
.

Installer 4 / 113

Since the InstallerNG is fully compatible to the C= Installer (at least to the
new Installer of the AmigaOS 3.5) this guide remains valid for both Installers!
The language of the C= Installer can be seen as a subset of the InstallerNG’s
language and I will note, whether the C= Installer understands a specific ←↩

function
or not by a {NG}. So it does not matter, if I talk about the InstallerNG or the
C= Installer - both are meant, when I say Installer.

Some may be upset about the fact, that scripts run into errors, even if these
scripts did work fine with the C= Installer. This is not the fault of the ←↩

InstallerNG.
The C= Installer is very lazy - it does no checks, accepts very much errors and
did never notify the programmer/user about errors. The InstallerNG is definitely
not lazy and reports errors!

1.5 Versions if the Installer

I think, there are three important version of the Installer

older than 42.9/42.12
You can be sure, that every Installer has at least version 42.9/42.12.
These versions extended the old language by some new features and functions.
I guess, when you programm a script, you can be sure that this script runs
at least version 42.12, since this was the last official release. But a
version check would be safe.

44.10 (AmigaOS 3.5)
This version comes with the new AmigaOS 3.5 and was done by Jochen Becher
(Haage & Partner). He just added some new functions to the Installer language
which support multimedia files and a simple backtrace mechanism.

44.10 (InstallerNG 1.4+)
My InstallerNG is compatible the the latest version of the original Installer.
The scripts run without problems, but the programmer can make use of the
new functions of the InstallerNG.

1.6 The installation of the Installer

The Installer is a system tool and, thus, can be found in your C:
drawer. For those who want to use my InstallerNG (recommended!) - just
double-click at the Install icon and follow the steps.

In fact, it does not matter where the Installer can be found as long as
it resides in the systems path.

1.7 What’s new for the InstallerNG

Installer 5 / 113

Here you find all the things I added to the InstallerNG and, ←↩
thus, which features

are not supported by the old Installer. So if you want to use these new features
and run the script on the original Installer you may run into errors. Thats why
a version check is very important!

No restrictions
The original Installer cannot handle larger strings (currently, I don’t know ←↩

what
is meant by "larger" strings...). With the InstallerNG a string (and the value ←↩

of
a string variable too) can be as long as it fits into your memory.

Nice GUI
The builtin-gui is based on a BOOPSI class-collection, which was also written
by me; these classes allow easy font-adaption, resizing and support the ←↩

MagicWB
pens. Additionally, you may "plug-in" other gui-systems (like MUI, BGui, ...)
via a shared library named "installergui.library". This archive also contains ←↩

the
interface definition, such that anyone could program a custom gui for my ←↩

InstallerNG.

Furthermore, the help window can stay open, while you install your packages;
this is a builtin feature and should be provided by every GUI.

Comfortable WB-Start
If you run the InstallerNG from WB and give it no script via tooltypes
a requester pops up which asks you whether you want to load a script by a
file-requester or if you want to app-iconify the installer. If you drop a
script-file on the application icon the InstallerNG gets started.

Returncode
The InstallerNG returns RETURN_OK (0) if everything of the installation
went fine, or, in case of an error, it returns RETURN_FAIL (20). This could
be useful, if you call the InstallerNG from a script and the script wants
to check whether the InstallerNG was successfull or not.

Flexible interpretation
If an error raises while the interpretation process, the InstallerNG provides
to continue at the very next function. Please be careful with this option,
because going on may lead to some other errors, but often it’s really useful ←↩

to
finish the (uncomplete) installation.

New builtin variables
@installer-ng-version -- the version of the InstallerNG
@proceed-button -- holds the text for the "Proceed with install"-button

Constants
- TRUE/DOSTRUE and FALSE/DOSFALSE are now constants and cannot be modified
- NOVICE, AVERAGE and EXPERT are builtin constants, so you can use them ←↩

instead
of 0, 1 and 2 (usefull for

CONFIRM
and

Installer 6 / 113

USER
functions)

New Tooltypes/CLI-Arguments
LAZYCOMPILE: if set, then the InstallerNG is as lazy as the C= installer

is. that means, InstallerNG skips its semantic check procedures
to be more compatible

DEBUGMODE: if set, then InstallerNG will switch on it‘s debugmode
CREATEUNINSTALL=CUI: if set, then InstallerNG creates an uninstall skript
COPYFILECOMMENT=CFC: if set, every copied file will be commented with the ←↩

package name
ALWAYSCONFIRM: if set, every action has to be confirmed in every user-level!
NOSYSDELETE: if set, calls to DELETE from system drawers will be ignored

Interuptable Interpretation
The InstallerNG can be interupted everytime by sending the CTRL-F signal to ←↩

its
process. This option allows to break out of infinite loops.

Local environments
Everytime you want to, you are allowed to create a new environment (i.e. to ←↩

declare
several new variables). Inside this environment you can run some code, which ←↩

uses
the local variables prior the global ones. See the function

LET
for more details.

SOOP - Simple Object Oriented Programing
With help of the new functions PUT-PROPERTY, GET-PROPERTY and REMOVE-PROPERTY ←↩

the
InstallerNG implements LISP-like property-lists for symbols. Imagine of a ←↩

symbol
as an object and the properties as the objects attributes. Furthermore, if you ←↩

write
PROCEDURE’s, which are able to operate on an object‘s attributes, you just can ←↩

produce
simple OO code :) ...without a class hierarchy, but object oriented!

UNDO-REDO environments
Using the function

SWING
you are able to build an environment, in which you can

"swing" from one (topmost) function to the next. When reaching the last one, ←↩
the

installation may proceed. This looks/works much like the MS-Setup program :)

With v44 of the C= installer, you are able to simulate such an environment by
special

TRACE
and

RETRACE
functions and the

BACK
parameter

Full installation control

Installer 7 / 113

If you want to, the InstallerNG asks for confirmation of every action, no ←↩
mattter

what the script-programmer codes in his installer script

AppWindow
InstallerNG can now act as an socalled "AppWindow", i.e. you may drop files ←↩

into
the window and InstallerNG uses them. This only works, when the InstallerNG ←↩

asks
for a file or directory (see

ASKFILE
,
ASKDIR
)

Enhanced Functions

DATABASE

EXISTS
New Functions

BEEP

COMPARE

DELAY

FINDBOARD

FLUSHLIBS

LET

NOP

RANDOM

REBOOT

SETENV

SIMULATE-ERROR

SWING

GET-PROPERTY

PUT-PROPERTY

REMOVE-PROPERTY

Installer 8 / 113

1.8 ’Hello World’ - the first working program

Now let’s write our first program for the Installer. Run an editor (something
like GoldED, even the ED command of your shell is good enough) and just write
the following line:

(message "Hello world")

Save this as "t:helloworld" and open a shell window (see your Workbench manual
for help). Type "installer t:helloworld" and press enter. The Installer should
open a window, which asks you, if you are "Novice", "Average" or "Expert".
Select "Expert" and press the "Proceed" button. Currently, just ignore the next
panel and press the "Proceed" again. Now you should see our "Hello world" text.
Quit the Installer by pressing the "Proceed" button again.

Thats all... you did it!

1.9 The language - an overview

Have a look at the
Hello World
program to see a very small but legal

script. The language has a very simple structure. Some may say, it is LISP but
they are wrong (LISP is an old dirty-functional language). It may look so, but ←↩

has
nothing in common.

A script consists of a collection of functions. A function just starts with an
opening bracket, followed by the functions name and several (or maybe zero)
arguments for this function and ends with a closing bracket. Examples for
such functions are

(+ 5 2) ; just add 5 and 2
(message "really simple, isn’t it?!") ; show a message

You see, comments start with a semi-colon and end with the end of the line. The
InstallerNG also supports multi-lined comments, which are enclosed in "/*" and
"*/" (like comments in C). Furthermore, the Installer does not care for upper
or lower letters!

It may look strange to you, that we write the function symbol at first, followed
by its arguments. In mathematics this style is called "prefix notation". ←↩

Everyone
knows "infix notation" - the school-like addition is infix, because we write
the functional symbol between its arguments. Of course there is also an
"postfix notation", guess, how this looks like!

Every function deliveres a result and this result has a type. This makes the
it possible to use every function as argument to another function, if the types
are valid. This means, you cannot use a function, which evaluates to a string

Installer 9 / 113

result, as argument to a function which expects a number argument. A runtime
error will be produced in such cases. Try to calculate the result of this
expression:

(+ 1
(+ 2 3)
4
(- 5

(* 2 3)
(/ 9 3)

)
)

Of course we need variables! A veriable can be declared by using the SET
function:

(set #number 5)
(set #string "hello")

The first SET defines a variable "number" of type NUMBER and gives it the value
5. The second function defines a variable "string" of type STRING and the value
of this variable will be the string "hello". You see, the Installer ←↩

distinguishes
exactly two types: the numbers and the strings. Later, we will add a new type, ←↩

but
for now, this is quiet enough. Additionaly, the Installer offers several builtin
variables, which hold information about the current Installer environment. The
script can use these variables as they were defined by the user. It is a ←↩

convention,
that builtin variables start with "@" and the user defined variables with "#", ←↩

but
this is definitely no must!

A script can become very large. In such cases it would be useful to have custom
functions for maybe version checks, copying end so on. You can define your own
functions by using the PROCEDURE function. A user defined function should start
with a "P_" to avoid collisions with later extension to the builtin function set ←↩

.

(procedure P_Error #errobject #errcode
(

(beep) {NG}
(message "Error #" #errcode " with " #errobject)
(exit (quiet))

)
)

..

(P_Error "my_file" 5)

Installer 10 / 113

This defines a function "P_Error" which expects two arguments: #errobject and
#errcode. You can invoke such functions, just as they were builtin - simply call
them.

1.10 How can I start the Installer

Just like nearly every other Amiga tool, you can start the ←↩
Installer either

through a
shell
or from

Workbench
.

1.11 Running from Shell/CLI

The Installer can be started by simply typing its name and the ←↩
script file. The

script file argument is the only one argument, which you must specify! Every
other argument is optional. This is the argument template of the InstallerNG:

SCRIPT/A,APPNAME/K,MINUSER/K,DEFUSER/K,LOGFILE/K,LANGUAGE/K,
NOPRETEND/S,NOLOG/S,NOPRINT/S,LAZYCOMPILE/S,DEBUGMODE/S,
CREATEUNINSTALL=CUI/S,COPYFILECOMMENT=CFC/S,ALWAYSCONFIRM/S,
NOSYSDELETE=NSD/S

APPNAME specifies the name of the application you want to install. Usually
this is the name of your tool. MINUSER sets the minimal operation mode for
the Installer and DEFUSER presets the operation mode. The user may change
the operation mode by selecting a mode in the first welcome panel (refer to
the

WELCOME
function). Use LOGFILE to set the file, which

will be handled as an installation protocol or set NOLOG, if you want to
forbid any logging actions. NOPRINT disables the logging to the standard
printer. If you set NOPRETEND then the user cannot turn on the pretend mode.
In pretend mode, the Installer just simulates an installation process. The
LANGUAGE specifies the language, which should be used in the script.

The rest of the arguments is valid only for the InstallerNG and they set
the "Advanced options". LAZYCOMPILE turns off any check procedure at startup
and the InstallerNG does not look for errors during compilation. DEBUGMODE
turns on the debug console and prints useful warnings. Use CREATEUNINSTALL
to produce an uninstall script from the current installation session. If you
run this produced script again with the Installer, it will de-install the
package. COPYFILESCOMMENT just comments every copied file with the name
of the current application name (see APPNAME argument) by appending the old
file comment to the application name. For full installation control, you should
set the ALWAYSCONFIRM argument, which forces the Installer to ask for
confirmation everytime. NOSYSDELETE avoids the deletion from system drawers

Installer 11 / 113

like C: or LIBS: or whatever...

1.12 Running from WB

If you run the Installer from Workbench, you can set up a ←↩
working environment for

it by specifying tooltypes.

SCRIPT=<scriptfile>
APPNAME=<name>
MINUSER=<novice|average|expert>
DEFUSER=<novice|average|expert>
LOGFILE=<logfile>
LANGUAGE=<language>
PRETEND
LOG
NOPRINT
ICONIFY {NG}
LAZYCOMPILE {NG}
DEBUGMODE {NG}
CREATEUNINSTALL {NG}
COPYFILECOMMENT {NG}
ALWAYSCONFIRM {NG}
NOSYSDELETE {NG}

Except the ICONIFY tooltype, these tooltypes are equal to the
shell
arguments and,

thus, I do not write the meaning here again.

ICONIFY holds, if you give no SCRIPT argument. Usually, the Installer would ask,
whether the user wants to load a script or just iconify the Installer. Using ←↩

this
tooltype forces the Installer to immediately iconify.

1.13 The types of the Installer

The Installer distinguishes betweem two main types: STRING
and NUMBER. Additionally, the parameter functions do not return
any of these main types, but a PARAM type just to notify, that
such a parameter function was executed.

Now forget about the PARAM type, it is internally. Only work
with the STRING and NUMBER types!

1.14 The Errors

Installer 12 / 113

To understand these errors think of the syntactical structure of any program:

A program consists of one or more functions or function lists. An expression can
be either a number, a string, a variable or a new function. Functions are ←↩

enclosed
in paranthesis, the first symbol can be anything but a number and a function-
specific number of arguments. An argument can be again any expression.

Syntax Errors

(expected
The Installer needs a new function

(or function expected
The Installer needs the beginning of a new function or the name of
a function. (you may have wrote a number)

Function not allowed here
A function-name (like ASKFILE...) is used as a parameter to any other
function. Remove this or enclose it with parenthesis.

Unexpected EOS
The end of the source was reached to early. Maybe a missing close- ←↩

parenthesis
leads this error.

Expression expected
Any expression is needed here.

Functional expression needed
The first expression behind opening parenthesis must be an identifier or a
string. What you wrote is maybe a number.

) expected
You forgot a ")" ???

1.15 The Installer Language

The language used by the Installer is a simple, imperative ←↩
language. Since I

like functional languages, I tried to give this language a "functional"
touch, i.e. every expression can be evaluated and returns a typed result.
Furthermore I started to make the language a bit type stronger, because types
are very needful for preventing errors. But don‘t panic, this language is
definitly not functional (it has side-effects!) and very easy to use.

Imagine of the Installer as the Interpreter of a given script. Interpreter means ←↩
,

the Installer first looks at the whole program (i.e. the script) and then ←↩
fetches

the first function, evaluates it and maybe uses the result as an argument for ←↩
the

next function, then it gets the next function, evaluates it... and so on. For ←↩
more

Installer 13 / 113

detailed information see section Technical You may have noticed the syntax:
it may look strange to some, but it is a simple prefix notation. "Prefix" means,
that the functional symbol is at first position, followed by its parameters. ←↩

Every
function must be enclosed by parenthesis. For example to simply add two numbers,
you must write: (+ 2 3)

A complete list of all functions you will find here. Of course you find ←↩
everything

of a good imperative language: conditionals, variables, a big set of built-in
functions, the ability to define custom functions and much more.

Since the original Installer does not offer all the things I wanted to use, I
added some more functions and features. See the What‘s New section for more
information.

NOTE: everytime I talk about a string or a number value, you are allowed to use
an identifier of type string or number or an expression (function,
function list) which deliveres a result of type string or number.

Symbols

Syntax
Builtin functions

Builtin variables
Advanced features

1.16 The symbols of the language

Symbols are the bricks of every programming language. A variable ←↩
, a number

or even the keywords are the symbols (also called: tokens) of a language. By
writing a meaningful sequence of symbols, you just write your program. Here
you will find the symbols for the Installer programming langage. This is not
a formal definition, but I think it is useful.

Spaces
Spaces are the characters between other symbols and are skipped, when the
InstallerNG scanns the script-file. Every character with an ASCII less or
equal 32 gets handled as a space.

Parenthesis
Parenthesis are used to enclose functions and function lists. Only "(" and ")"
are legal for that.

Strings
A string is enclosed in either "..." or ’...’ and must not contain
linefeeds. Special characters start with a backslash, followed by
the character, which should appear in the string itself:

\0 for a NULL character (ASCII-0)
\b beep (ASCII-8)

Installer 14 / 113

\t \h tabulator (ASCII-9)
\n linefeed (ASCII-10)
\v ? (ASCII-11)
\f ? (ASCII-12)
\r carriage return (ASCII-13)

\\ for a backslash itself

\o octal encoded number
\x hex encoded number

\" to use a " inside of a "..." string
\’ to use a ’ inside of a ’...’ string

Example: "string"
"first line\nsecond line"
"numbers are: 123 \o70 \xffff"
"string ’cite’"
"string \"cite\""
’string "cite"’
’string \’cite\’’

Numbers
There are three types of numbers:

binary: starting with "%" and followed by a sequence of "0" and "1"
decimal: starting with a number or a "+" or a "-" and followed

by a sequence of "0"..."9"
hex: starting with "$" and followed by a sequence of "0"..."9"

and "a"..."f" (lower or upper case allowed)

Example: -4 +53 23 %101011 $A35B

Identifiers
Functions

Functions are character sequences (like variables), but the Installer ←↩
identifies

them as function sybols. See the
builtin functions
section for which symbols

are reserved. Case insensitive.

Note: You must not use reserved names for your identifiers! Reserved names
are e.g. the builtin function names or the builtin variable names.

Example: < >= / AND ASKFILE

Variables
Are character sequences, which are not builtin functions. Note, that only ←↩

the
first 32 characters count! Case insensitive.

Example: #bla ___*A^ popopop

Comments
Single line comments start with a semicolon ";" and end with a return (ASCII ←↩

-10)

Installer 15 / 113

Multi lined comments can be enclosed in "/*" and "*/" and may contain anything
but a EOF (ASCII-0). Note, that multi lined comments are new with the ←↩

InstallerNG
and NOT supported by the C= Installer!

Example: ; single lined comment

/*
multi lined comment

*/

1.17 The layout of the language

Defining the syntax for a programming language means to say, ←↩
which sequences

of symbols build a correct source code. It does not make sense to write some
numbers and variables -- the Installer has specific rules for which symbol must
follow another symbol. You know, that a function must be enclosed in brackets
and can have some arguments. This is a syntactical rule for the Installer
programming language. This syntax definition does whether define the types of ←↩

the
arguments nor the legal count of arguments for the functions! This so called
"context sensitive" check can be done after the syntax check, or can be skipped
by specifying the LAZYCOMPILE option at

startup
.

Below you find both, an informal and a formal syntax definition.

Informal
A legal script contains at least one function. A function opens with
a "(" followed by the functional symbol (this is called "prefix notation")
followed by zero or more argument expressions; a function ends with a ")".
A valid expression can be either a number, a string, an identifier or a
function again. In addition, you can group a collection of functions by ←↩

enclosing
them again with brackets.

Formal
Below you find the EBNF description:

<prog> ::= [<func>]+

<func> ::= "(" "IDENT" [<expr>]* ")"
| "(" "STRING" [<expr>]* ")"
| "(" [<func>]+ ")"

<expr> ::= "NUMBER"
| "STRING"
| "IDENT"
| <func>

Installer 16 / 113

For a definition of the symbols NUMBER, STRING and IDENT see the

Symbols
section.

1.18 Builtin variables

The builtin variables are declared an initialized by the ←↩
Installer itself at

startup. They hold useful information about the environment, in which the script
will execute or you can modify the environment by setting these variables. A
script can use these variables just like custom ones an may, for instance, ←↩

localize
the texts. If you set a new value for some variable, you must care for its type,
otherwise the script may run into runtime errors.

@abort-button
The text, which should be used for the "Abort installation" button

Default: "Abort installation"
Type: STRING

@app-name
Name of the application to install. This will be used for the "Comment every ←↩

File
with Packagename" option too.

Default: "user-application"
Type: STRING

@icon
The path and name of the script, i.e. the icon, where the Installer was ←↩

started
from (WB start) or the full path to the script when started from shell.

Default: the script, even
Type: STRING

@execute-dir
The working directory for the commands started with

RUN
or

EXECUTE
Default: "" (should be the scripts dir)

Type: STRING

@default-dest
The Installer’s suggested location for installing an application. If you ←↩

installed
the application somewhere else (as the result of asking the user) then you ←↩

should
modify this value -- this will allow the "final" statement to work properly.

Default: "Work:"

Installer 17 / 113

Type: STRING

@language
The language, which is currently used by the Installer. This depends on the ←↩

preferred
system language and the available catalog file

Default: "english"
Type: STRING

@pretend
The state of the "pretend" flag (1 for pretend)

Default: 0 or set by startup-args
Type: NUMBER

@proceed-button {NG}
This holds the text for the "Proceed with Install"-button. Use this to ←↩

customize
the button text. Useful if you run uninstall-scripts

Default: "Proceed with Install"
Type: STRING

@user-level
The user level, which is the Installer running on. (0 for "Novice", 1 for " ←↩

Average",
2 for "Expert"). Note: this can be set by the

USER
function, do not use

SET
for this case!

Note: the InstallerNG affers the builtin constants NOVICE, AVERAGE and
EXPERT for a easier usage.

Default: 0 or set by startup-args
Type: NUMBER

@installer-version
Current version of the Installer. Note: this does not equal the version of the
InstallerNG!

Default: 0x002c000a (which is a 44 in the upper word and a 6 in the lower one)
Type: NUMBER

@installer-ng-version {NG}
This holds the current InstallerNG version. By testing this value against zero ←↩

,
you can determine whether you run on the old Installer (zero) or the ←↩

InstallerNG
(not zero)

Default: 0x00010004 (which is 1 in the upper 16 bits and 4 in the lower)
Type: NUMBER

@error-msg

Installer 18 / 113

The text that would have been printed for a fatal error, but was overridden by ←↩
a

trap statement.

Default: ""
Type: STRING

@special-msg
If a script wants to supply its own text for any fatal error at various points ←↩

in
the script, this variable should be set to that text. The original error text ←↩

will
be appended to the special-msg within parenthesis. Set this variable to "" to ←↩

clear
the special-msg handling.

Default: ""
Type: STRING

@ioerr
In case of a DOS-error, this variable holds the error-code.

Default: 0, set by every DOS error
Type: NUMBER

@each-name
@each-type

Name and type (file or directory) of the currently examined file of the
FOREACH
function

Default: depends
Type: STRING/NUMBER

@askoptions-help
@askchoice-help
@asknumber-help
@askstring-help
@askdisk-help
@askfile-help
@askdir-help
@copylib-help
@copyfiles-help
@makedir-help
@startup-help

The bultin help texts.

Default: depends
Type: STRING

1.19 Builtin functions

The Installer provides a large amount of functions for nearly ←↩
everything

Installer 19 / 113

you want. You can query the user, examine the system, manipulate files,
run scripts and programs, you can show effects (needs the datatypes) and
last but not least you have many functions for calculating stuff.

The InstallerNG offers some more functions which (I guess) are hardly
needed today. These functions are marked with {NG}. Furthermore, the InstallerNG
enhanced some functions without losing compatibility. These enhancements are
noted by {+}.

With the new AmigaOS 3.5 the Installer offers some more functions. These
functions are also supported by the InstallerNG and are marked with a {44.6}
(which is the minimum version of the new Installer of the AmigaOS 3.5).

Note: the specification of the arguments (if any) uses a special notation --
i.e. [arg]+ means several arguments, but at least one has to be given; [arg]*
means that this function can have zero or more arguments and [arg]{n-m} (or
even [arg]{n}) means n ’til m (even only n) arguments. For simplification,
I write just [arg] to denote only one argument.

Conditional
These functions control the working flow of your script. Using conditions
you can decide where to continue the script execution. Note, that for ←↩

conditions,
an empty string will be interpreted like the number zero: as FALSE

IF

SELECT

UNTIL

WHILE
Multimedia and visual support

For an entertaining installation, the new Installer provides functions for
handling pictures, sounds, animations and so on via datatypes. In addition,
you can run the Installer on a custom screen with simple background features
by using the EFFECT function.
NOTE: the InstallerNG implements asynchronous viewers!

CLOSEMEDIA
{44.6}

SETMEDIA
{44.6}

SHOWMEDIA
{44.6}

EFFECT
{44.6}

Mathematical stuff

Comparison

Installer 20 / 113

=

<>

>

>=

<

<=

COMPARE
{NG}

Traditional math

+

-

*

/
Logical operations

AND

OR

XOR

NOT
Bit testing & manipulation

BITAND

BITOR

BITXOR

BITNOT

IN

SHIFTLEFT

SHIFTRIGHT
Querying the user

In most cases the script needs information from the user, e.g. where to
install the package or by asking what to install. This can be realized by
these following functions.

ASKDIR

Installer 21 / 113

ASKFILE

ASKSTRING

ASKNUMBER

ASKCHOICE

ASKOPTIONS

ASKBOOL

ASKDISK
Notifying the user

BEEP
{NG}

COMPLETE

MESSAGE

WELCOME

WORKING
Examining the system

In most cases the script needs to know about the system environment.
Several functions can be used to find out different system’s properties
and you should use these functions rather than runing external commands.

DATABASE
{+}

FINDBOARD
{NG}

GETASSIGN

GETDEVICE

GETDISKSPACE

GETENV

GETSIZE

GETSUM

GETVERSION

QUERYDISPLAY
{44.6}

String manipulation
It is often needed to modify, append or extract strings.

Installer 22 / 113

CAT

PATMATCH

STRLEN

SUBSTR
File handling and DOS

Everything you can think of for file manipulation, copying and
handling icons and related stuff.

COPYFILES

COPYLIB

DELETE

EARLIER

EXECUTE

EXISTS
{+}

EXPANDPATH

FILEONLY

FOREACH

ICONINFO

MAKEASSIGN

MAKEDIR

PATHONLY

PROTECT

RENAME

REXX

RUN

STARTUP

TACKON

TEXTFILE

TOOLTYPE
Debugging and additional execution control

Installer 23 / 113

In case of an error, a script could clean up its environment or
undo some steps and so on by using some of these functions. Furthermore,
this is important and very helpfulf when programming scripts.

For being more userfriendly, you should use the new functions
SWING or TRACE/RETRACE just to give the user a chance to undo/redo
his initial settings or something like that.

ABORT

DEBUG

NOP
{NG}

ONERROR

EXIT

REBOOT
{NG}

RETRACE
{44.6}

SIMULATE-ERROR
{NG}

SWING
{NG}

TRACE
{44.6}

TRANSCRIPT

TRAP

USER
Workbench support

Starting with the new AmigaOS 3.5, there is an interface for tools to
handle disks, drawers etc as so called "Workbench Objects". For the user these
functions work, as the user itself had clicked on a drawer or tool and the
AmigaOS will perform the related action automatically. The Installer also
supports this interface with these functions:

CLOSEWBOBJECT
{44.7}

OPENWBOBJECT
{44.7}

SHOWWBOBJECT
{44.7}

Installer 24 / 113

SOOP support
Only for the InstallerNG. I did this for fun and maybe someone makes use
of these features?

GET-PROPERTY
{NG}

PUT-PROPERTY
{NG}

READ-PROPERTY-OBJECT
{NG}

REMOVE-PROPERTY
{NG}

SAVE-PROPERTY-OBJECT
{NG}

Others
This is the rest of the functions

DELAY
{NG}

FLUSHLIBS
{NG}

LET
{NG}

PROCEDURE

RANDOM
{NG}

SET

SETENV
{NG}

Parameter Functions
This set of functions is very special. It does not make sense to use
them like the ones above, but you must use these functions as arguments
to some other functions. These functions can modify the local environment
of different functions like COPYFILES or the query functions.

ALL

APPEND

ASSIGNS

BACK

Installer 25 / 113

{44.6}

CHOICES

COMMAND

CONFIRM

DEFAULT

DELOPTS

DEST

DISK

FILES

FONTS
GETDEFAULTTOOL

GETPOSITION
GETSTACK
GETTOOLTYPE

HELP

INCLUDE

INFOS

NEWNAME

NEWPATH

NOGAUGE

NOPOSITION

NOREQ

OPTIONAL

PATTERN

PROMPT

QUIET

RANGE
RESIDENT

SAFE

SETTOOLTYPE

SETDEFAULTTOOL

Installer 26 / 113

SETSTACK

SOURCE

SWAPCOLORS

1.20 Advanced features

Defining custom functions
Often it should be useful to define custom functions, which are called
as they were part of the Installer. Use the

PROCEDURE
function for this

purpose. The name of custom functions should start with a "P_" just to avoid
collisions with future builtin functions. In some cases it is very useful to ←↩

have
local variables for such a function. The old Installer does not provide this
feature, but with my InstallerNG you can define so called "let environments" (←↩

see
the

LET
function). This environment can be used to create a local ←↩

environment
for a custom function. You must do so, if your functions are recursive, i.e. ←↩

if
they call themselves.

A custom function is defined by its name, a number (even zero) of arguments
and the body of the function itself.

/* convert a version number to a readable string */
(PROCEDURE P_version-to-string ; name

#ver ; argument
("%ld.%ld" (/ #ver 65536) (BITAND #ver 65535)) ; body

)

/* count down recursively by using LET */
(PROCEDURE P_recursive ; name

#arg ; argument
(LET (SET #local #arg) ; body

(
(IF #local

(P_recursive (- #local 1))
(NOP)

)
)

)
)

String formatting
Some may know the ANSI-C function sprintf(), which takes a template string and

Installer 27 / 113

a number of arguments and creates a new string by replacing the wildcards in ←↩
the

template string by the related argument. The Installer has this functionality ←↩
too.

If the functional symbol (remember: this is the leftmost one, because this is ←↩
a

prefix language) is of type string (and it does not matter whether it is a ←↩
string

itself or a variable of type string!), then this string gets handled like a ←↩
format

string (a template), and the following expressions are the format parameters. ←↩
Possible

wildcards are (in fact, the Installer uses exec.RawDoFmt() so that you can ←↩
write

every valid template string here):

%s - string
%lc - character
%ld - decimal number
%lu - unsigned decimal number
%lx - hex number

For example, if you write

("string ’%s’ at 0x%lx has %ld chars" "bla" $0000a123 3)

you will get the following as result of the evaluation:

"string ’bla’ at 0xA123 has 3 chars"

Note: the Installer does no type checking for the arguments and every argument
comes as a long value (32 bit).

Function groups
You can join as many functions as you want into one block: simply put ←↩

parenthesis
around the functions you want to yoin. The result of this block is the result ←↩

of
the last evaluated function. This is often used, if you want more than one
functions be part of an (e.g.) IF or just to make the code more readable.

(IF (= #bla #surz) ; the condition
(MESSAGE "#bla equals #surz") ; "THEN" expression
(; "ELSE" block

(BEEP) {NG}
(MESSAGE "#bla equals #surz")

)
)

Installer 28 / 113

1.21 Some theoretical stuff

Here you find some additional information about the InstallerNG. One can find
how the Interpreter itself works or some theoretical aspects of the language.

For a big overview about the specification and implementation (german only)
please have a look at my homepage (note that this script is obsolete with
version 0.3+).

Interpretation
The interpreter does it‘s job using "call-by-name" strategy. This means it ←↩

first
evaluates the expression at the first (functional) position of a function, ←↩

which
results into a function call. The called function then evaluates the arguments
and uses the results of this as arguments. As you can see this process is ←↩

recursive.

An example: given the following functions (set i (+ 3 4)) the Installer ←↩
produces

such a tree:
set
^

i +
^

3 4

Now the interpreter arrives at the top node "set". This means the interpreter
calls the internal function "set" and gives as arguments its childs. These ←↩

childs
are an identifier "i" and a sub-tree. Now "set" knows it needs the value of ←↩

the
sub-tree (+ 3 4) so it calls the internal "add" function and this functions ←↩

gets
both, "3" and "4" as arguments. Now "add" evaluates to "7" and gives the ←↩

result to
"set" and now "i" is set to "7".

To give this an other name: interpreting a program means to visit every node ←↩
of

the tree in depth-first-left-to-right-order. Or: go down every (sub)-tree from
left to right.

Grammar
The underlying grammer of the language is a context-free LL(1) grammar. Every
functional symbol has some attributes (e.g. "Number of args" or "Scope" ←↩

attributes).
The parser is a top-down one. While parsing the source it calculates some ←↩

attributes
for the nodes of the syntax tree. When done with the tree the optimizer starts ←↩

to
try to optimize the given tree. After this a special function checks whether ←↩

the
given tree is correct or not by comparing and calculating attributes. Don"t ←↩

mix it

Installer 29 / 113

up with an Attribute Grammar -- this is no one. I just took some ideas from ←↩
this

formalism to make the interpretation more stable.

1.22 Very important notes!!!

There are some very important things you must respect:

Version
The variable @installer-version is set to the current version
of the Installer. In this version, this variable contains the same
value as the lates release of the C= installer: 44.6! Additional
you can check, whether you run on the InstallerNG or not by
testing the @installer-ng-version variable: the C= installer returns
a 0 (zero), but the InstallerNG holds its version in this
variable.

(IF @installer-ng-version
(

; this InstallerNG version
)

(
; the original amiga installer

)
)

Most public programming faults

Uninitialized variables
Most of the programmers forget to set the variables before use.
The original installer accepts this and sets these variables to
0 (zero). The InstallerNG warns you but behaves in the same
way.
Use the debug output to find uninitialized variables!

Wrong usage of parameter functions
There come some function calls like this:

(ASKFILE (IF (= 0 #bla) (PROMPT "Blurp"))
(IF (= 1 #bla) (PROMPT "Barg"))
(IF (= 2 #bla) (PROMPT "Tirz"))
(HELP "Help...")
(DEFAULT "SYS:")

)

This results in a "Warning: wrong number of arguments", because ASKFILE
is missing the PROMPT argument. Note, that this is only a semantic warning,
the InstallerNG behaves in the right way! For future scripts use
something like this:

Installer 30 / 113

(ASKFILE (PROMPT (IF (= 0 #bla)
"Blurp"
(IF (= 1 #bla)

"Barg"
"Tirz"

)
)

)
(HELP "Help...")
(DEFAULT "SYS:")

)

Weird syntactic/semantic constructs
It is amazing what people code and more funny what the C= Installer
compiles...

(IF <condition> <then> <else> <what-the-hell-is-this>)

Or something like this:

(ASKOPTIONS (CHOICES 1 2 3
(DEFAULT 1

(HELP "little help..."
(PROMPT "choose!")

)
)

)
)

Parameter functions at wrong positions
Some scripts come along with wrong positions for the parameter functions, e. ←↩

g.

(MAKEDIR (SAFE) (INFOS) "sys:new_dir")

This does not work and if you have a look at the original documentation of ←↩
the

installer language, you will find the correct expression:

(MAKEDIR "sys:new_dir" (SAFE) (INFOS))

1.23 All functions in alphabetical order

This is the index for all functions in alphabetical order. Go
here

Installer 31 / 113

for
additional explanation of the functions and a grouped overview.

=

<>

>

>=

<

<=

+

-

*

/

ABORT

ALL

AND

APPEND

ASKDIR

ASKFILE

ASKSTRING

ASKNUMBER

ASKCHOICE

ASKOPTIONS

ASKBOOL

ASKDISK

ASSIGNS

BACK
{44.6}

BEEP
{NG}

BITAND

Installer 32 / 113

BITNOT

BITOR

BITXOR

CAST-INT
{NG}

CAST-STRING
{NG}

CAT

CHOICES

CLOSEMEDIA
{44.6}

CLOSEWBOBJECT
{44.7}

COMMAND

COMPARE
{NG}

COMPLETE

CONFIRM

COPYFILES

COPYLIB

DATABASE
{+}

DEBUG

DEFAULT

DELAY
{NG}

DELETE

DELOPTS

DEST

DISK

EFFECT
{44.6}

Installer 33 / 113

EXECUTE

EXISTS
{+}

EXIT

EXPANDPATH

EARLIER

FILEONLY

FILES

FINDBOARD
{NG}

FLUSHLIBS
{NG}

FONTS

FOREACH

GET-PROPERTY
{NG}

GETASSIGN
GETDEFAULTTOOL

GETDEVICE

GETDISKSPACE

GETENV
GETPOSITION

GETSIZE
GETSTACK

GETSUM
GETTOOLTYPE

GETVERSION

HELP

ICONINFO

IF

IN

INCLUDE

INFOS

Installer 34 / 113

LET
{NG}

NEWNAME

MAKEASSIGN

MAKEDIR

MESSAGE

NEWPATH

NOGAUGE

NOP
{NG}

NOPOSITION

NOREQ

NOT

ONERROR

OPENWBOBJECT
{44.7}

OPTIONAL

OR

PATHONLY

PATMATCH

PATTERN

PROCEDURE

PROMPT

PROTECT

PUT-PROPERTY
{NG}

QUIET

QUERYDISPLAY
{44.6}

READ-PROPERTY-OBJECT
{NG}

Installer 35 / 113

RANDOM
{NG}

RANGE

REBOOT
{NG}

REMOVE-PROPERTY
{NG}

RENAME
RESIDENT

RETRACE
{44.6}

REXX

RUN

SAFE

SAVE-PROPERTY-OBJECT
{NG}

SELECT

SET

SETDEFAULTTOOL

SETENV
{NG}

SETMEDIA
{44.6}

SETSTACK

SETTOOLTYPE

SHIFTLEFT

SHIFTRIGHT

SHOWMEDIA
{44.6}

SHOWWBOBJECT
{44.7}

SIMULATE-ERROR
{NG}

SOURCE

Installer 36 / 113

STARTUP

STRLEN

SUBSTR

SWAPCOLORS

SWING
{NG}

TACKON

TEXTFILE

TOOLTYPE

TRACE
{44.6}

TRANSCRIPT

TRAP

UNTIL

USER

WELCOME

WHILE

WORKING

XOR

1.24 ABORT

This exits the installation with the given messages and executes
the {"ONERROR" link ONERROR} functions (if any)

Template
(ABORT [msg]*)

Parameters
[msg] - strings which will be concatenated an shown right before

the InstallerNG starts to execute the ONERROR functions

Options

Result
Type: NUMBER
Returns 0

Installer 37 / 113

Note

Example

(ABORT "Sorry, I have to quit cause: " #reason)

See also

ONERROR

1.25 ADD

Add all the parameters

Template
(+ [value]+)

Parameters
[value] - the value to be added

Options

Result
Type: NUMBER
Returns the sum of all arguments

Note

Example

See also

1.26 AND

The logical "and", i.e. AND deliveres true if all its arguments are true. AND
stops the evaluation with the first false-argument

Template
(AND [value]+)

Parameters
[value] - the value which should logically be tested

Options

Result
Type: NUMBER
Returns 1 for true and 0 for false

Note

Installer 38 / 113

Example

See also

1.27 ASKDIR

Ask the user for a name of a directory. The Installer will show a dir requester ←↩
panel

whichs allows an easy selection of the requested directory.

Template
(ASKDIR [option]+)

Parameters

Options
PROMPT
HELP - tell the user what’s going to happen
DEFAULT - the default directory; this can be a relative path
NEWPATH - allows to use non-existent paths for DEFAULT
DISK - initially show a list of all drives
ASSIGNS - logical assigns satisfy as well

Result
Type: STRING
Returns the user selected directory

Note
- does return the DEFAULT without a request in "Novice" mode

Example

(ASKDIR (PROMPT "select a directory")
(HELP "...")
(DEFAULT "C:")

)

See also

1.28 ASKFILE

Ask the user for a file. The Installer will show a file requester panel
whichs allows an easy selection of the requested file.

Template
(ASKFILE [option]+)

Parameters

Options

Installer 39 / 113

PROMPT
HELP - tell the user what’s going to happen
DEFAULT - the default file; this can be a relative one
NEWPATH - allows to use non-existent paths for DEFAULT
DISK - initially show a list of all drives

Result
Type: STRING
Returns the user selected file (with expanded path)

Note
- does return the DEFAULT without a request in "Novice" mode

Example

(ASKFILE (PROMPT "where can i find your ’delete’ command?")
(HELP "...")
(DEFAULT "C:Delete")

)

See also

1.29 ASKSTRING

Ask the user for string. The Installer will show a panel where the
user can enter the desired text.

Template
(ASKSTRING [option]+)

Parameters

Options
PROMPT
HELP - tell the user what’s going to happen
DEFAULT - the default string

Result
Type: STRING
Returns the string, typed by the user

Note
- does return the DEFAULT without a request in "Novice" mode

Example

(ASKSTRING (PROMPT "gimme your name")
(HELP "...")
(DEFAULT "Linda Perry")

)

Installer 40 / 113

See also

1.30 ASKNUMBER

Ask the user for number. The Installer will show a panel where the
user can enter the number. Furthermore, your can specify a range and
the user cannot enter numbers outside of this range.

Template
(ASKNUMBER [option]+)

Parameters

Options
PROMPT
HELP - tell the user what’s going to happen
DEFAULT - the default number
RANGE - lower and upper range (if any) for the requested number

Result
Type: NUMBER
Returns the number

Note
- does return the DEFAULT without a request in "Novice" mode

Example

(ASKNUMBER (PROMPT "gimme a small number")
(HELP "...")
(DEFAULT 0)
(RANGE 0 99)

)

See also

1.31 ASKCHOICE

Ask the user to select one out of 32 (max) choices. The Installer will show
a panel with several mx buttons and the user has to select one of these.

Template
(ASKCHOICE [option]+)

Parameters

Options
PROMPT
HELP - tell the user what’s going to happen
DEFAULT - the default choice (default is 0)
CHOICES - the list of choices, where the user has to select one

Installer 41 / 113

Result
Type: NUMBER
Returns the number of the selected choice (starting with zero)

Note
- does return the DEFAULT without a request in "Novice" mode
- an empty string for a choice means an invisible mx

Example

; should return either 0 (male) 1 (female) or 3 (don’t know)
(ASKCHOICE (PROMPT "what’s your sex?")

(HELP "...")
(DEFAULT 1)
(CHOICES "male" "female" "" "don’ know")

)

See also

1.32 ASKOPTIONS

Ask the user to select some out of 32 (max) options. The Installer will show
a panel with several radio buttons and the user has to select the desired ones.

Template
(ASKOPTIONS [option]+)

Parameters

Options
PROMPT
HELP - tell the user what’s going to happen
DEFAULT - the default choice (default -1)
CHOICES - the list of choices, where the user has to select one

Result
Type: NUMBER
Returns a bitmask of selected choices, where a set bit indicates, that
the related choices was selected

Note
- does return the DEFAULT without a request in "Novice" mode
- an empty string for a choice means an invisible mx

Example

; should return 0 (nothing), 1 (upper), 2 (lower) or 3 (both)
(ASKOPTIONS (PROMPT "what do you like for breakfest")

(HELP "...")
(DEFAULT 1)
(CHOICES "tea" "toast)

)

Installer 42 / 113

See also

1.33 ASKBOOL

Ask the user to just answer "Yes" or "No" like questions. The Installer
shows two mx buttons and the user selects the related button.

Template
(ASKBOOL [option]+)

Parameters

Options
PROMPT
HELP - tell the user what’s going to happen
DEFAULT - the default choice (default 0)
CHOICES - replace at least one of the both "Yes" and "No" by custom ones

Result
Type: NUMBER
Returns 1 for "Yes" and 0 for "No"

Note
- does return the DEFAULT without a request in "Novice" mode

Example

(ASKBOOL (PROMPT "Amiga is really cool")
(HELP "...")
(DEFAULT 1)
(CHOICES "Sure" "Never)

)

See also

1.34 ASKDISK

Ask the user to insert a specific disk. As long as this disk is not
available, the Installer will wait.

Template
(ASKDISK [option]+)

Parameters

Options
PROMPT
HELP - tell the user what’s going to happen
DEST - the requested disk

Installer 43 / 113

NEWNAME - a name to assign to the disk when inserted for later reference
DISK - show drives initially
ASSIGNS - also accept logical devices

Result
Type: NUMBER
Returns a bitmask of selected choices, where a set bit indicates, that
the related choices was selected

Note
- the volume name must be supplied without a colon! (i.e. you must write

"env" instead of "env:")

Example

; waits until the user inserts the disk "bla:"
(ASKDISK (PROMPT "insert disk ’BLA:’")

(HELP "...")
(DEST "bla")

)

See also

1.35 BEEP

{NG} Simply flashes the screen and beeps.

Template
(BEEP)

Parameters

Options

Result
Type: NUMBER
Returns 0

Note
This respects your prefs-settings when beeping.

Example

(BEEP)

See also

1.36 BITAND

Installer 44 / 113

Does a bitwise AND with the arguments

Template
(BITAND [value]{2})

Parameters
[value] - the arguments for the bitwise logical AND

Options

Result
Type: NUMBER
Returns the result of the bitwise AND

Note

Example

See also

1.37 BITOR

Does a bitwise OR with the arguments

Template
(BITOR [value]{2})

Parameters
[value] - the arguments for the bitwise logical OR

Options

Result
Type: NUMBER
Returns the result of the bitwise OR

Note

Example

See also

1.38 BITXOR

Does a bitwise OR with the arguments

Template
(BITXOR [value]{2})

Parameters
[value] - the arguments for the bitwise logical XOR

Installer 45 / 113

Options

Result
Type: NUMBER
Returns the result of the bitwise XOR

Note

Example

See also

1.39 BITNOT

Does a bitwise NOT with the argument

Template
(BITAND [value])

Parameters
[value] - the value to be bitwise negated

Options

Result
Type: NUMBER
Returns the result of the bitwise NOT

Note

Example

See also

1.40 CAST-INT

{NG} Konvert an arbitrary value into a number

Template
(CAST-INT <value>)

Parameters
<value> - whatever

Options

Result
Type: NUMBER
Returns the number value of [value] or 0, iff the casting was
not possible

Installer 46 / 113

Note
Casting fails, iff [value] is a string value and does not contain
a translateable character sequence (e.g. (CAST-INT "a") will fail)

equivalent: (+ [value] 0)
(* [value] 1)

Example

See also

1.41 CAST-STRING

{NG} Konvert an arbitrary value into a string

Template
(CAST-STRING <value>)

Parameters
<value> - whatever

Options

Result
Type: STRING
Returns the string value of [value], i.e. return a string as it
is and turn a number into a string, which contains this number

Note
equivalent: (CAT [value])

Example

See also

1.42 CAT

Concatenate several strings.

Template
(CAT [string]+)

Parameters
[string] - the strings to be concatenated

Options

Result
Type: STRING
Returns the concatenation of all argument strings

Note

Installer 47 / 113

- CAT converts its number arguments into strings, such that you may
use CAT for getting a string out of an number

Example

(SET #longstring (CAT "this is a long string with numbers..." 4 5 "82" "!!!"))

See also

1.43 CLOSEMEDIA

Closes an arbitrary media object, which must have been opened ←↩
using

SHOWMEDIA
Template

(CLOSEMEDIA [mediaobject])

Parameters
[mediaobject] - the object to be closed

Options

Result
Type: NUMBER
Returns 0

Note
see

SHOWMEDIA
Example

see
SHOWMEDIA

See also

SETMEDIA
,
SHOWMEDIA

1.44 CLOSEWBOBJECT

Closes an arbitrary workbench object, which currently only can ←↩
be a disk

or a drawer or a trashcan

Template
(CLOSEWBOBJECT [wbobject])

Parameters
[wbobject] - the object to be closed

Installer 48 / 113

Options

Result
Type: NUMBER
Returns 1, if CLOSEWBOBJECT could perform this closing action, 0 if
not or -1, if the machine (i.e. the Workbench) does not support this
function.

Note

Example
see

OPENWBOBJECT
See also

see
SHOWWBOBJECT
,
OPENWBOBJECT

1.45 COMPARE

{NG}
This function compares two values of any, but the same type and returns
the result of this comparison.

Template
(COMPARE [expr1] [expr2])

Parameters
[expr1] - first value
[expr2] - value, which has to be compared with the first value

Options

Result
Type: NUMBER
Returns 1 - [expr1] greater than [expr2]

0 - [expr1] equals [expr2]
-1 - [expr1] is smaller than [expr2]

Note
- both arguments must be of the same type. The Installer tries

to convert a string into a number if the types are not equal

Example

(COMPARE 2 2) -> 0
(COMPARE 2 "2") -> 0
(COMPARE "bla" "nana") -> -1

See also

Installer 49 / 113

1.46 COMPLETE

Inform the user about the completion of an installation process.
This message will be printed in the title bar of the installer
window.

Template
(COMPLETE [done])

Parameters
[done] - a number between 0 and 100 which means the amount

of work, which is already done

Options

Result
Type: NUMBER
Returns the argument [done]

Note

Example

(COMPLETE 75) ; print, that 75% of the installation is done

See also

1.47 COPYFILES

Copy a number of files from a source to a destination. The Installer
shows the files and the user may select/deselect, which files of the
predefined files should be copied.

Template
(COPYFILES [option]+)

Parameters

Options
PROMPT
HELP - tell the user what’s going to happen
SOURCE - the name of the source file or directory (may be relative)
DEST - name of the destination file or directory (may be relative)

Note: the destination directory will be created, if it does
not exist

NEWNAME - if copying one file only, and file is to be renamed, this is the
new name.

CHOICES - a list of files/directories to be copied (optional)
ALL - all files/directories in the source directory should be copied.
PATTERN - indicates that files/directories from the source dir matching ←↩

this
pattern should be copied

FILE - Only copy files; by default the Installer will match and copy

Installer 50 / 113

subdirectories
INFOS - switch to copy icons along with other files/directories.
NOPOSITION - reset the position of every icon copied.
FONTS - switch to not display ".font" files, yet still copy any that ←↩

match
a directory that is being copied

NOGAUGE - don’t display the status indicator
OPTIONAL - dictates what will be considered a failure on copying; the first

three options are mutually exclusive (they may not be specified
together)

FAIL: Installer aborts if could not copy (the default).
NOFAIL: Installer continues if could not copy.
OKNODELETE: aborts if can’t copy, unless reason was "delete ←↩

protected".
FORCE: unprotect destination
ASKUSER: ask user if the file should be unprotected (but not in

novice) In the case of ‘askuser’, the default for novice mode
is an answer of "no". Therefore, you may want to use ‘force’
to make the novice mode default answer appear to be "yes".

DELOPTS - removes options set by "optional"
CONFIRM - if this option is present, user will be prompted to indicate ←↩

which
files are to be copied, else the files will be copied silently.

SAFE - copy files even if in PRETEND mode.

Result
Type: NUMBER
Return 0

Note
- the options ALL/CHOISES/PATTERN are mutually exclusive
- PATTERN only accepts standard AmigaOS patterns

Example

; just copy files beginning with "C" or "F" to t:
(COPYFILES (SOURCE "c:")

(DEST "T:")
(PATTERN "(C#?|F#?)")

)

1.48 COPYLIB

Copies only one file using version checking, i.e. it only overwrites the
destination file (if it exists) if the new file has a version/revision
higher than the existing file. If the destination directory does not
exist, it will be created.

Template
(COPYLIB [option]+)

Parameters

Installer 51 / 113

Options
PROMPT
HELP - tell the user what’s going to happen
CONFIRM - if this option is present, user will be prompted to confirm the

copy operation, else the files will be copied silently. Note that
an EXPERT user will be able to overwrite a newer file with an
older one.

SOURCE - the name of the source file(may be relative)
DEST - name of the destination directory (may be relative)
NEWNAME - if the file is to be renamed, this is the new name
INFOS - switch to copy icons along with other files/directories.
NOPOSITION - reset the position of every icon copied.
NOGAUGE - don’t display the status indicator
OPTIONAL - dictates what will be considered a failure on copying; the first

three options are mutually exclusive (they may not be specified
together)
FAIL: Installer aborts if could not copy (the default).
NOFAIL: Installer continues if could not copy.
OKNODELETE: aborts if can’t copy, unless reason was "delete ←↩

protected".
FORCE: unprotect destination
ASKUSER: ask user if the file should be unprotected (but not in

novice) In the case of ‘askuser’, the default for novice mode
is an answer of "no". Therefore, you may want to use ‘force’
to make the novice mode default answer appear to be "yes".

DELOPTS - removes options set by "optional"
SAFE - copy the file even if in PRETEND mode.

Result

Note
- the destination directory will be created, if it does not exist

Example

(COPYLIB (SOURCE "libs/mylib.library_020")
(DEST "libs:")
(NEWNAME "mylib.library")

)

1.49 DATABASE

Returns information about the AMIGA that the InstallerNG is running on. The ←↩
second

argument [checkvalue] is meant to be optional. If you do not use this argument, ←↩
DATABASE

always returns a string with the result (see below for valid results). When ←↩
using the

[checkvalue], then InstallerNG returns a number which is either 0 or 1.

Template
(DATABASE [feature] [checkvalue]{0-1})

Parameters

Installer 52 / 113

[feature] This string argument describes the information you are looking
for. Valid features are:

"CPU" - which type of CPU
("68000", "68010", "68020", "68030", ←↩

"68040", "68060")
"PPC" {NG} - checks for PPC; returns "PPC" if there is a ←↩

PPC installed,
"" otherwise

"FPU" - which type of FPU ("68881", "68882", "FPU040 ←↩
", "FPU060")

"MMU" {NG} - which type of MMU ("68851", "MMU040", " ←↩
MMU060")

"OS-VER" {NG} - the version of exec (e.g. "40")
"GRAPHICS-MEM" - amount of free chip memory
"FAST-MEM" {NG} - amount of free fast memory
"TOTAL-MEM" - total free memory
"CHIPREV" - the revision of the graphic chipset

("AA", "ECS", "AGNUS")
"GFXSYSTEM" {NG} - the installed graphics system

("CyberGraphics", "Picasso96")
"DATE" {NG} - the current date of your computer
"TIME" {NG} - the current time of your computer
"GUI" {NG} - type of the used GUI

[checkvalue] optional; when given, this has to be a string. After evaluating ←↩
the

[feature], the result-string is compared to [checkvalue]. If this
comparison matches, then DATABASE returns the number 1, otherwise ←↩

the
number 0

Options

Result
the only parameter is [feature]

a string containing the requested information or "unknown" if [feature] is ←↩
an

illegal string

both parameters [feature] and [checkvalue] specified
a number; 1 if [checkvalue] matches the result of [feature], otherwise 0

Note
- InstallerNG accepts patterns for the [checkvalue] string, which will not ←↩

work
with the C= installer

Example

(DATABASE "cpu") ; e.g. "68060"
(DATABASE "bla") ; "unknown"
(DATABASE "cpu" "68000") ; 1 iff you run on a 68000, otherwise 0

; this worx on every installer!!!
(IF @installer-ng-version

(
(DATABASE "cpu" "(68040|68060)")

Installer 53 / 113

)
(

(PATMATCH "(68040|68060)" (DATABASE "cpu"))
)

) ; 1 iff you run on a 68040 or 68060, ←↩
otherwise 0

See also

1.50 DEBUG

Print anything to the InstallerNG-DEBUG console. You can supress
this output with switching off the "Show debug" option or by not
setting the DEBUGMODE shell-argument/tooltype.

Template
(DEBUG [debuginfo]+)

Parameters
[debuginfo] - this can be anything: a number, a string, an expression.

DEBUG prints the evaluation-result of [debuginfo] to the
console window, followed by a linefeed.

Options

Result
Type: STRING
The result of the last [debuginfo] - evaluation

Note
- if [debuginfo] is an uninitialized variable, then DEBUG prints

an "<NIL>" to warn the user

Example

(SET a 0)
(DEBUG 1 "does not equal" a b)

See also

1.51 DELAY

{NG}
Sometimes it is useful to wait a specific time. Use the DELAY function for this
purpose.

Template
(DELAY [ticks])

Parameters

Installer 54 / 113

[ticks] - a number whichs defines the ticks. A tick is 1/50 second.

Options

Result
Type: NUMBER
Returns the [ticks]

Note

Example

(DELAY 50) ; wait a second

See also

1.52 DELETE

Delete a specific file

Template
(DELETE [file] [options]*)

Parameters
[file] - the path and name of the file, which has to be deleted (may be ←↩

relative)

Options
PROMPT
HELP - tell the user what’s going to happen.
CONFIRM - if this option is present, the user will be asked for confirmation ←↩

,
otherwise the delete proceeds silently

OPTIONAL - should deletions be forced. options:
FORCE: unprotect destination
ASKUSER: ask user if the file should be unprotected (but not in ←↩

novice
mode) In the case of ASKUSER, the default for "Novice" mode is ←↩

an
answer of "No". Therefore, you may want to use FORCE to make
the novice mode default answer appear to be "Yes"

DELOPTS - removes options set by OPTIONAL
SAFE - delete even if in "Pretend" mode
INFOS - also delete corresponding info file. Do not use this option

together with ALL
ALL - check all matching subdirectories, too

Result
Type: NUMBER
Returns 0

Note
- you are allowed to specify an AmigaOS pattern for the [file] parameter and

by setting the ALL option, DELETE will delete all matching entries

Installer 55 / 113

Example

; deletes all libraries from LIBS:, which are named bla....library
(DELETE "libs:bla#?.library"

(SAFE)
(ALl)

)

See also

1.53 DIV

Divide a number by an oter one

Template
(/ [value1] [value2])

Parameters
[value1]
[value2] - both values

Options

Result
Type: NUMVER
Returns the result of value1/value2

Note

Example

1.54 EARLIER

Check, whether a file is "younger" than another file

Template
(EARLIER [file1] [file2])

Parameters
[file1]
[file2] - the files

Options

Result
Type: NUMBER
Returns 1 if [file1] is earlier than [file2]; 0 otherwise

Note

Installer 56 / 113

Example

1.55 EFFECT

If the script contains an EFFECT function, then this function will be
executed before any other function. EFFECT opens a new screen (with same
properties as the "Workbench") and forces the Installer to work on
that new screen. Additionally, you can define simple grafix effects on
this screen

Template
(EFFECT [position] [effect] [color1] [color2])

Parameters
[position] - moves the Installer window to a special position; valid

strings are - "upper_left"
- "upper_center"
- "upper_right"
- "center_left"
- "center"
- "center_right"
- "lower_left"
- "lower_center"
- "lower_right"

[effect] - specify the effect for the screens background; valid
strings are - "horizontal" (fades with horizontal lines)

- "radial" (fade with circles)
[color1]
[color2] - set the fading colors; both are NUMBERS and specify the

24 bit RGB value

Options

Result

Note
- using an own screen makes it impossible to use InstallerNG’s drag-n-drop

features
- the effect "radial" only works on true-color screens and falls back to

"horizontal" on non-true-color screens

Example

; fade from black to white
(EFFECT "center" "horizontal" $00000000 $00ffffff)

See also

1.56 EQU

Installer 57 / 113

Checks, whether an expression equals an other expression

Template
(= [value1] [value2])

Parameters
[value1]
[value2] - the values to be compared

Options

Result
Type: NUMBER
Returns 1 if both values are equal, 0 otherwise

Note
- see

COMPARE
- causes a "type conflict" error, if both types are not equal ←↩

and
when they were not convertable

Example
see

COMPARE
See also

1.57 EXECUTE

Execute an AmigaDOS script with the given arguments

Template
(EXECUTE [script] [args]* [option]*)

Parameters
[script] - the script, which has to be executed
[args] - the arguments for the script

Options
PROMPT
HELP - tell the user what’s going to happen
CONFIRM - ask the user for confirmation
SAFE - execute even in "Pretend" mode

Result
Type: NUMBER
Returns the return value of the script

Note
- the secondary result will be stored in the variable @ioerr

Example

Installer 58 / 113

1.58 EXIT

Causes a normal termination of a script. The
ONERROR
functions are not

evaluated.

Template
(EXIT [message]* [option])

Parameters
[message] - these strings are concatenated and displayed as the final report

Options
QUIET - skip the final message

Result
Type: NUMBER
Returns 0

Note

Example

1.59 EXISTS

Checks if a given path is valid or not. The result is a number, which describes
the type of the path.

Template
(EXISTS [path] [option]*)

Parameters
[path] - this string is the object, which has to be examined, e.g. "s:blurp"

Options
NOREQ - when specified, then no requester will pop up, if [path] is not on an

mounted volume

Result {NG}
Type: NUMBER
Returns 0 - [path] does not exist

1 - [path] is a file
2 - [path] is a directory
3 - [path] is a link to a file
4 - [path] is a link to a directory

Note
The old Installer just returns either 0 or not 0

Example

(EXISTS "s:startup-sequence") ; should be 1

Installer 59 / 113

(EXISTS "C:") ; should be 2
(EXISTS "grfm:hlbzs/hsjs") ; maybe 0

See also

1.60 EXPANDPATH

Get the full path of a file or a logical assign

Template
(EXPANDPATH [path])

Parameters
[path] - the path which should be expanded

Options

Result
Type: STRING
Returns the full path of [path]

Note

Example

(EXPANDPATH "c:") ; may deliver "System:C" or whatever

See also

1.61 FILEONLY

Returns the file part (i.e. the last path component) of a given ←↩
path

Template
(FILEPART [path])

Parameters
[path] - the path

Options

Result
Type: STRING
Returns the file part of the [path]

Note

Example

Installer 60 / 113

See also

PATHONLY

1.62 FINDBOARD

{NG}
This functions makes you able to find a specific hardware expansion board in
the system.

Template
(FINDBOARD [manufacturer] [product])

Parameters
[manufacturer] - the manufacturer id of the board. this id is unique for

every (registered!) hardware producer and is assigned by C=
[product] - the number of the product of a specific manufacturer.

Options

Result
Type: NUMBER
Returns the number of found boards

Note
To get a list of valid manufacturers and their products, please have a look
at the "board.library" package or related tools like "ShowBoardsMUI" by
Torsten Bach

Example

(SET #boardcount (FINDBOARD 8512 67)) ; how many CV64/3D gfx-cards has the ←↩
system?

See also

1.63 FLUSHLIBS

{NG}
Removes every actually unused library from the system. This can be useful if
you install new libraries and want to use them without rebooting the entire
system.

Template
(FLUSHLIBS)

Parameters

Options

Installer 61 / 113

Result
Type: NUMBER
Returns zero

Note
To flush a system shared library, it must not be used while the remove process ←↩

!

Example

; now remove unused libraries from the system
(FLUSHLIBS)

See also

1.64 FOREACH

For each file of a directory, which matches a given pattern,
a sequence of functions will be executed. The variables @each-name
and @each-type will hold the name and the AmigaDOS object type
(file/directory) for each of the matching files.

Template
(FOREACH [dir] [pattern] [fun]+)

Parameters
[dir] - the directory which will be used for the walk
[pattern] - an AmigaDOS pattern, which specifies the files, for which

some functions will be executed
[fun] - functions for matching files; these functions should make

use of the variables @each-name and @each-type

Options

Result
Type: NUMBER
Return 0

Note
- @each-type is less than zero for files; greater than zero for directories

Example

; recursively print a directory tree of a given dir
(PROCEDURE P_PrintDirTree #d

(LET (SET #dir #d)
(FOREACH #dir "#?"

(
(DEBUG @each-name)
(IF (> @each-type 0) (P_PrintDirTree (tackon #dir ←↩

@each-name)))
)

)
)

Installer 62 / 113

)

See also

1.65 GE

Checks, whether an expression is greater or equal to an other ←↩
expression

Template
(>= [value1] [value2])

Parameters
[value1]
[value2] - the values to be compared

Options

Result
Type: NUMBER
Returns 1 if [value1] is greater or equal than [value2], 0 otherwise

Note
- see

COMPARE
- causes a "type conflict" error, if both types are not equal ←↩

and
when they were not convertable

Example
see

COMPARE
See also

1.66 GETASSIGN

Returns the pathname of an AmigaDOS object.

Template
(GETASSIGN [name] [spec]{0-1})

Parameters
[name] - the name of the object, for which the path should be found
[spec] - specifies, in which list the installer should search; valid

strings are: - "a" for the list of assigns (default)
- "v" for the volume list
- "d" for the device list

Note that you are allowed to specify several lists by appendig
the specification characters (i.e. if you want to search all
three list, simply write "adv")

Installer 63 / 113

Options

Result
Type: STRING
Returns the pathname or an empty string, if the pathname could not
be found

Note
- without setting a [spec], only the assign list will be checked
- [name] must be specified without colons; i.e. instead of "ENV:" you

must write "ENV"

Example

See also

1.67 GETDEVICE

Returns the name of the device, on which a given path resides

Template
(GETDEVICE [path])

Parameters
[path] - the path, for which the device name should be found

Options

Result
Type: STRING
Returns the device name

Note
- the device name comes without colons

Example

; find out, on which device the mountlist resides
(GETDEVICE "devs:mountlist") ; may return "System"

See also

1.68 GETDISKSPACE

Returns the available free diskspace in bytes on the disk given by
a path.

New for v44+
Additionally, you may specify the unit for the calculated space.
Typical hard drives are larger than 4 G today and partitions may

Installer 64 / 113

also be larger than 2 G. Older versions of Installer returns illegal
values for partitions larger than 2 GB. The new installer returns the
maximum integer (2147483647) if the partition is too large.

Template
(GETDISKSPACE [path] [unit]{0-1})

Parameters
[path] - the path, which specifies device
[unit] - optional and defines the unit for the returned disk space:

"B" (or omitted) is "Bytes", "K" is "Kilobytes", "M" is "Megabytes"
and "G" is "Gigabytes"

Options

Result
Type: NUMBER
Returns the free disk space or -1, if [path] was illegal

Note
- you should use at least unit "K" in new installer scripts to

avoid overflows with large harddrives.

Example

See also

1.69 GETENV

Returns the content of a environment variable, which is usually
located in the "ENV:" drawer

Template
(GETENV [varname])

Parameters
[varname] - the name of the variable

Options

Result
Type: STRING
Returns the content of the variable

Note
- currently, the content is limited to 64 bytes, which should be

enough in most cases
- binary data are not supported

Example

See also

Installer 65 / 113

1.70 GET-PROPERTY

{NG}
Read a specific property of a symbol.

Template
(GET-PROPERTY <symbol> <property>)

Parameters
<symbol> - the target symbol
<property> - the desired property of the symbol

Options

Result
Type: depends on the propertys type
Returns the value of the property

Note
Raises an error, if the property does not exist.

Example

(SET #bla "savage is cool :-)") ; declare a symbol #bla
(READ-PROPERTY-OBJECT #bla) ; try to read saved properties
(PUT-PROPERTY #bla "property" 20) ; add property "property" to the symbol # ←↩

bla
(MESSAGE ; get the value of #bla‘s property " ←↩

property"
(GET-PROPERTY #bla "property")

)
(SAVE-PROPERTY-OBJECT #bla) ; save the properties of #bla
(REMOVE-PROPERTY #bla "property") ; remove "property" from #bla

See also

PUT-PROPERTY

REMOVE-PROPERTY

READ-PROPERTY-OBJECT

SAVE-PROPERTY-OBJECT

1.71 GETSIZE

Returns the size of a file in bytes

Template
(GETSIZE [filename])

Parameters

Installer 66 / 113

[filename] - the path and name of the file

Options

Result
Type: NUMBER
Returns the size of the file

Note

Example

See also

1.72 GETSUM

Calculate a checksum for a file. This could be used for checking
version or if the content of files differs

Template
(GETSUM [filename])

Parameters
[filename] - the name of the file, for which you wanna calc the checksum

Options

Result
Result: NUMBER
Returns the checksum for a file

Note
- use the "GetSum" shell command (provided with the InstallerNG package)

to calculate checksums for files from a shell

Example

See also

1.73 GETVERSION

This returns the version of a file. The file must have a valid RomTag
structure or a valid AmigaDOS 2.x version string. If you do not provide
the filename, this simply returns the version of the OS.

Template
(GETVERSION [name]{0-1} [option]*)

Parameters
[name] - the file, for shich you need the version

Options

Installer 67 / 113

RESIDENT - specifying this, causes the Installer to search the systems
library and device lists for the [name] entry

Result
Type: NUMBER
Returns the version of the file or OS; returns 0 if [name] was invalid

Note
The result is a 32 bit value; the upper 16 bits contain the version
and the lower 16 bits the revision.

Example

(GETVERSION) ; returns the version of the OS
(GETVERSION "c:dir") ; returns DIR’s version
(GETVERSION "dos.library" (RESIDENT)) ; returns the version of the dos.library

; this function converts a version number to a readable string
(PROCEDURE version-to-string #ver ("%ld.%ld" (/ #ver 65536) (BITAND #ver ←↩

65535)))
(MESSAGE "OS version of your Amiga: " (version-to-string (GETVERSION)) " !!!")

See also

1.74 GT

Checks, whether an expression is greater than an other ←↩
expression

Template
(> [value1] [value2])

Parameters
[value1]
[value2] - the values to be compared

Options

Result
Type: NUMBER
Returns 1 if [value1] is greater than [value2], 0 otherwise

Note
- see

COMPARE
- causes a "type conflict" error, if both types are not equal ←↩

and
when they were not convertable

Example
see

COMPARE
See also

Installer 68 / 113

1.75 ICONINFO

Obtain information about an icon’s tool type and more. Except for
the result, this function differs from other functions. The arguments
for most parameters are not values but names of symbols that will be
set to those values by the function. Be careful!

Template
(ICONINFO [option]+)

Parameters

Options
PROMPT
HELP - tell the user what’s going to happen.
DEST - the name of the icon to be modified. There is no need to ←↩

specify a
".info" extension.

CONFIRM - if this option is present, the user will be asked for ←↩
confirmation,

otherwise the modification proceeds silently.
SAFE - make changes even if in "Pretend" mode
GETTOOLTYPE - the tooltype name and result symbol name string.
GETDEFAULTTOOL - symbol name for the default tool name of a project.
GETSTACK - symbol name for the current stack size of the icon.
GETPOSITION - Two symbol names for the saved icon position in X and Y ←↩

direction.
Do not use this lightly. It is intended to keep icon
positions on updates with help of the parameter SETPOSITION
of the TOOLTYPE function. Arbitrarily changing icon positions
will lead to annoyed users due to different Workbench and ←↩

font
setups. If the icon doesn’t have a position set, -1 is ←↩

returned
for the respective position value. This may be passed to
TOOLTYPE

Result
Type: NUMBER
Returns 0

Note

Example

; show the initial size of the stack of the InstallerNG
(ICONINFO (DEST "C:InstallerNG")

(GETSTACK "stack")
)
(MESSAGE stack)

Installer 69 / 113

See also

1.76 IF

Conditionally execute functions. If [condition] is TRUE (i.e. not 0) then
the [then] will be executed, otherwise [else]

Template
(IF [condition] [then] [else])

Parameters
[condition] - any expression
[then] - functions which are executed if [condition] is TRUE
[else] - functions which are executed if [condition] is FALSE

Options

Result
Type: depends
Returns the result of [then] or [else]

Note

Example

(IF (= 2 4) ; condition
(MESSAGE "TRUE") ; then
(; else

(MESSAGE "FALSE")
(BEEP)

)
)

See also

1.77 IN

Returns 0 if none of the given bit numbers (starting at 0 for the
LSB) is set in the value, else returns a mask of the bits that were set.

Template
(IN [value] [bitnum]+)

Parameters
[value] - the value to be checked
[bitnum] - the numbers of bits, which are checked, whether they are

set in [value] or not

Options

Result

Installer 70 / 113

Type: NUMBER
Returns 0 or a mask

Note

Example

See also

1.78 LE

Checks, whether an expression is less or equal to an other ←↩
expression

Template
(<= [value1] [value2])

Parameters
[value1]
[value2] - the values to be compared

Options

Result
Type: NUMBER
Returns 1 if [value1] is less or equal than [value2], 0 otherwise

Note
- see

COMPARE
- causes a "type conflict" error, if both types are not equal ←↩

and
when they were not convertable

Example
see

COMPARE
See also

1.79 LET

{NG}
This function creates a new environment. This means, you can declare new ←↩

variables
within the <init> functions and use them in the <body> functions. If you define
local variables, which have the same name like existing ones, you "replace" the ←↩

existing
by the local variables. Nevertheless you can access existing variables, which ←↩

are
not overwritten.
Imagine of the new environment as a layer, which overwrites variables with the ←↩

same name

Installer 71 / 113

but keeps all other variables.
Put this function as the first into a PROCEDURE definition and write the body of ←↩

the
PROCEDURE as the body of the LET function! Now you have private variables for ←↩

the
procedure :)

Template
(LET <init> <body>)

Parameters
<init> - one function, which initializes the local environment. It does not ←↩

make
sense to use other functions than SET here

<body> - the body of a LET function are the functions, which use this local
environment

Options

Result
LET returns the result of the last function of <body>

Note
Since LET is a simple function, you can create LET environments inside of LET
environments inside of...

Example

; this "creates" the value 7 by adding values of the local environment
(LET (SET x 3 y 4)

(+ x y)
)

; a procedure with local variables
(PROCEDURE P_bla #arg1 #arg2

(LET (SET #local_x #arg1
#local_y #arg2

)

(
; do anything with #local_x and #local_y

)
)

)

1.80 LT

Checks, whether an expression is less than an other expression

Template
(< [value1] [value2])

Parameters
[value1]

Installer 72 / 113

[value2] - the values to be compared

Options

Result
Type: NUMBER
Returns 1 if [value1] is less than [value2], 0 otherwise

Note
- see

COMPARE
- causes a "type conflict" error, if both types are not equal ←↩

and
when they were not convertable

Example
see

COMPARE
See also

1.81 MAKEASSIGN

Assigns an assign to a path or removes a specific assign.

Template
(MAKEASSIGN [assign] [path]{0-1} [option]*)

Parameters
[assign] - the name for the assign
[path] - optional; the path, which should be assigned to [assign]

Options
SAFE - if specified, the assign will be created even in "Pretend" mode

Result
Type: NUMBER
Returns 0

Note
- omit [path] to clear the assign

Example

See also

1.82 MAKEDIR

Just create a new directory. Furthermore you are allowed to
specify a complete path and the Installer will create all the
necessary sub-directories

Installer 73 / 113

Template
(MAKEDIR [name] [option]*)

Parameters
[name] - the name or path of the directory

Options
PROMPT
HELP - tell the user what’s going to happen
CONFIRM - ask for confirmation; otherwise the directory will be

created silently
INFOS - also create an icon for the drawer
SAFE - make the directory even in "Pretend" mode

Result
Type: NUMBER
Returns 0

Note

Example

See also

1.83 MESSAGE

~Display some text to the user

Template
(MESSAGE [string]* [option]*)

Parameters
[string] - the strings, which, all concatenated into one single string,

gets displayed

Options
ALL - Show the text also to "Novice" users

Result
Type: STRING
Returns the displayed text

Note
- in "Novice" mode, the text will not be shown as long as you do not

specify the ALL option

Example

See also

1.84 MUL

Installer 74 / 113

Multiply some values

Template
(* [value]*)

Parameters
[value] - all the values, from which the result will be calculated

Options

Result
Type: NUMBER
Returns the product of the multiplication

Note

Example

See also

1.85 NE

Checks, whether an expression is equals an other expression

Template
(<> [value1] [value2])

Parameters
[value1]
[value2] - the values to be compared

Options

Result
Type: NUMBER
Returns 1 if [value1] does not equal [value2], 0 otherwise

Note
- see

COMPARE
- causes a "type conflict" error, if both types are not equal ←↩

and
when they were not convertable

Example
see

COMPARE
See also

Installer 75 / 113

1.86 NOP

{NG}
Does nothing...
Since my language definition does not allow empty function-lists,
I thought it would be useful to have a NOP function for this case :)
Additional, if you give an expressin as argument, NOP evaluates this
expression and returns it’s value instead of 0 (weird...)

Template
(NOP [expr]{0-1})

Parameters
expr - if given, NOP evaluates this expression

Options

Result
Type: depends on [expr] or NUMBER (if no [expr] is given)
Returns [expr] or 0 (if no [expr] is given)

Note
You may ask, why i did this. The reason is simple: I needed something
like a "return (x)" in a PROCEDURE...

Example

; if @bla equals 5, then do nothing, else beep and pop a message
(IF (= @bla 5)

(NOP) {NG}
(

(BEEP) {NG}
(MESSAGE "@bla does not equal 5")

)
)

See also

1.87 NOT

Negates the boolean value of an expression

Template
(NOT [value])

Parameters
[value] - the value to be negated

Options

Result
Type: NUMBER
Returns the boolean "Not" of the value

Installer 76 / 113

Note

Example

See also

1.88 ONERROR

When a fatal error occurs that was not trapped, a set of ←↩
statements

can be called to clean-up after the script. These statements are
logged in by using the onerror construct. Note that onerror can be
used multiple times to allow context sensitive termination.

Template
(ONERROR [fun]*)

Parameters
[fun] - some functions, which will be executed in case of not trapped errors

Options

Result
Type: NUMBER
Returns 0

Note

Example

; execute this in case of an error
(ONERROR (BEEP) {NG}

(DEBUG "bad error!!!")
(EXIT (QUIET))

)

See also

TRAP

1.89 OR

The logical "or", i.e. OR deliveres true if at least one of its arguments is ←↩
true.

OR stops the evaluation with the first true-argument

Template
(OR [value]+)

Installer 77 / 113

Parameters
[value] - the value which should logically be tested

Options

Result
Type: NUMBER
Returns 1 for true and 0 for false

Note

Example

See also

1.90 OPENWBOBJECT

Open a workbench object, which can be either a disk, a drawer, a ←↩
trashcan, a

tool or a project

Template
(OPENWBOBJECT [wbobject] [option]*)

Parameters
[wbobject] - the object to be opened

Options
PROMPT
HELP - tell the user what’s going to happen
CONFIRM - ask for confirmation
SAFE - open the [wbobject] even in "Pretend" mode

Result
Type: NUMBER
Returns 1 if OPENWBOBJECT succeeded, 0 if the [wbobject] could
not be found, or -1 if the machine (i.e. the Workbench) does not
support this function

Note

Example

; open the "SYS:" drawer
(OPENWBOBJECT "sys:" (PROMPT "now opening the \"sys:\" drawer...")

(HELP "...")
(CONFIRM expert) {NG}

)

; scroll to or make the "Prefs" drawer visible
(SHOWWBOBJECT "sys:prefs")

; close the system drawer
(CLOSEWBOBJECT "sys:")

Installer 78 / 113

; run the multiview, as the user had double-clicked its icon
(OPENWBOBJECT "sys:tools/multiview" (PROMPT "simulating a workbench start for ←↩

multiview")
(HELP "...")
(CONFIRM novice) {NG}

)

See also
see

SHOWWBOBJECT
,
OPENWBOBJECT

1.91 PATHONLY

Returns the non-file part of a given path by extracting the last
component (the file part) from the path

Template
(PATHONLY [path])

Parameters
[path] - the path, from which you need the path part

Options

Result
Type: STRInG
Returns the path part of [path]

Note

Example

See also

FILEONLY

1.92 PATMATCH

Determines, if a given string matches an AmigaDOS pattern or not. The
pattern has to fulfill the conventions for patterns of the AmigaDOS!

Template
(PATMATCH [pattern] [string])

Parameters
[pattern] - an AmigaDOS pattern

Installer 79 / 113

[string] - the string, which gets matched against the [pattern]

Options

Result
Type: NUMBER
Returns 1 if the string matches the pattern, 0 otherwise

Note

Example

See also

1.93 PROCEDURE

Using this function, you can define your own functions.

Template
(PROCEDURE [name] [params]* [fun]+)

Parameters
[name] - an dentifier, which defines the name of the procedure
[params] - a list of parameters for the function
[fun] - the body of the function

Options

Result
(internally, this does not execute like other functions and, thus,
has not return value/type)

Note
- for future compatibility, please name your functions starting with

"P_" as prefix, so that collisions with new functions will be avoided
- PROCEDURE should be named "DEF-FUNCTION" or something similar, but

for compatibility I kept the name for the InstallerNG

Example
see

GETVERSION
or

FOREACH
for sample functions

See also

1.94 PROTECT

Either get or set the protection values of a given file or
directory. You can define the protection mask by a string or by

Installer 80 / 113

a number mask.

Template
(PROTECT [file] [mask]{0-1} [option])

Parameters
[file] - the file for this operation
[mask] - optional; either a string or a decimal number, which specifies the

mask of bits for the file. The bits and the related characters
are defined as follows

8 7 6 5 4 3 2 1 <- bit number

h s p a r w e d <- corresponding protection flag

^ ^ ^ ^ ^ ^ ^ ^
| | | | | | | |
| | | | | | | +- \
| | | | | | +--- | 0 = flag set
| | | | | +----- | 1 = flag clear
| | | | +------- /
| | | |
| | | |
| | | +--------- \
| | +----------- | 0 = flag clear
| +------------- | 1 = flag set
+--------------- /

Options
SAFE - change protection even in "Pretend" mode

Result
Type: NUMBER
Returns 0 (for failure) or 1 (for success) if you changed the protection
bits of a file or, if you want to read a protection (in this case, omit
the [mask] argument), returns the mask of protection bits of the given file

Note
- this follows the AmigaOS rules for protection bits
- you must not use the "H" bit since this is currently not supported

by the AmigaOS

Example

See also

1.95 PUT-PROPERTY

{NG}
Bind a property to a symbol. Imagine of a "property" as an attribut,
i.e. a property-name and a related value. If the property already exists,
its value just gets updated.

Template

Installer 81 / 113

(PUT-PROPERTY <symbol> <property> <value>)

Parameters
<symbol> - the target symbol
<property> - the property you wish to create or modify
<value> - the (new) value of the property

Options

Result
Type: depends on the type of <value>
Returns <value>

Note
If the <property> for the <symbol> already exists, the value of
the property will be changed to <value>

Example
see

GET-PROPERTY
See also

GET-PROPERTY

REMOVE-PROPERTY

READ-PROPERTY-OBJECT

SAVE-PROPERTY-OBJECT

1.96 QUERYDISPLAY

~Returns information about the current display of the Installer window

Template
(QUERYDISPLAY [object] [attribute])

Parameters
[object] - the target object, must be "screen" or "window"
[attribute] - the attribute of the object, which has to be examined;

valid attributes are for
windows: "width", "height", "upper", "lower" "left" "right"
screens: "width", "height", "depth", "colors"

Options

Result
Type: NUMBER
Returns the value of the attribute

Note

Example

Installer 82 / 113

See also

1.97 RANDOM

{NG}
This results in a random number, which ranges in given bounds

Template
(RANDOM <lower> <upper>)

Parameters
<lower>
<upper> - the numbers which specify the range, where the result ranges in

Options

Result
Type: NUMBER
Returns a random number from <lower> ... <upper>

Note

Example

(RANDOM 20 50) ; give a number between 20 and 50

See also

1.98 READ-PROPERTY-OBJECT

{NG}
Read all the properties of an object. See

SAVE-PROPERTY-OBJECT
for the construction of the filename, where the InstallerNG

stores the data.

Template
(READ-PROPERTY-OBJECT <ident>)

Parameters
<ident> - the identifier, for which the InstallerNG should

read the properties

Options

Result
Type: NUMBER
Returns 0

Note
The InstallerNG reads only properties of type STRING. If you

Installer 83 / 113

need a NUMBER value and you are not sure, whether or not the
InstallerNG imlicitly casts to NUMBER, you should use the

CAST-INT
function, to convert a STRING value into a NUMBER value.

Example
see

GET-PROPERTY
See also

GET-PROPERTY

PUT-PROPERTY

REMOVE-PROPERTY

SAVE-PROPERTY-OBJECT

1.99 REBOOT

{NG}
This function causes a reboot of your Amiga. Several scripts may need this to
mount new drivers to the system. Be careful with this ;)

Template
(REBOOT <options>)

Parameters

Options
(SAFE) - specifying this will cause a reboot even in pretend mode

Result :)
Type: NUMBER
Returns 0

Note

Example

(REBOOT) ; reboots, but not in pretend mode
(REBOOT (SAFE)) ; always reboot

See also

1.100 REMOVE-PROPERTY

{NG}
Remove a specific property from a symbol. This does really remove the property

Installer 84 / 113

itself, not only a reset of the property!

Template
(REMOVE-PROPERTY <symbol> <property>)

Parameters
<symbol> - the target symbol
<property> - the property you wish to remove

Options

Result
Type: NUMBER
Returns 0

Note
Raises an error, if the property does not exist.

Example
see

GET-PROPERTY
See also

GET-PROPERTY

PUT-PROPERTY

READ-PROPERTY-OBJECT

SAVE-PROPERTY-OBJECT

1.101 RENAME

Rename a file/directory or a disk.

Template
(RENAME [oldname] [newname] [option*)

Parameters
[oldname] - the source file/directory or the disk to be renamed; in

case of an disk, the name must contain a colon (e.g. "DF0:")
[newname] - new name; in case of a disk, the new name must NOT contain

the colon

Options
PROMPT
HELP - tell the user what’s going to happen
CONFIRM - if this is present, then the user will be asked for confirmation
DISK - you must specify this, if you want to rename a disk

(called "relabeling)
SAFE - rename even in "Pretend" mode

Result
Type: NUMBER

Installer 85 / 113

Returns 0

Note

Example

See also

1.102 RETRACE

This will skip the last evaluated TRACE an does continue to work ←↩
at

the previous one. A tracepoint gets lost if the evaluation leaves the
scope of the TRACE.

Template
(RETACE)

Parameters

Options

Result
Type: NUMBER
Returns 0

Note

Example

(TRACE) ; set the first tracepoint
(MESSAGE "now followes an IF")
(IF (= 1 1)

(
(TRACE) ; this tracepoint gets lost when the installer

; leaves this then-block!
(MESSAGE "then")

)
(MESSAGE "else")

)
(TRACE)
(RETACE)

This will result in an infinite loop, because the inner TRACE (situated
in the then-block) gets lost and RETRACE skips to the trailing TRACE

See also

TRACE

Installer 86 / 113

1.103 REXX

Executes a given ARexx script with the given arguments.

Template
(REXX [script] [arg]* [option]*)

Parameters
[script] - the script to be executed
[arg] - arguments for the script

Options
PROMPT
HELP - tell the user what’s going to happen
CONFIRM - if specified, the user will be asked for confirmation
SAFE - execute, even in "Pretend" mode

Result
Type: NUMBER
Returns the primary result of the script and stores the secondary
result in @ioerr

Note
- this needs an active ARexx server

Example

See also

1.104 RUN

Executes a binary programm with the given parameters

Template
(RUN [command] [arg]* [option]*)

Parameters
[command] - the command, which should be executed
[arg] - arguments for the command

Options
PROMPT
HELP - tell the user what’s going to happen
CONFIRM - if specified, the user will be asked for confirmation
SAFE - run command, even in "Pretend" mode

Result
Type: NUMBER
Returns the primary result of the command and stores the secondary
result in @ioerr

Note

Example

Installer 87 / 113

1.105 SAVE-PROPERTY-OBJECT

{NG}
Save the properties of an identifier to a file. The filename is
built by appending the name of the identifier to the application
name (i.e. the value of the builtin variable @APP-NAME). By saving
such a property list, you will get a file, which contains all the
properties in this format:

propertyname=value
propertyname=value
...

You may use this to store configurations or whatever by simply
using such property lists.

Template
(SAVE-PROPERTY-LIST <ident>)

Parameters
<ident> - an identifier, which properties should be saved to a file

Options

Result
Type: NUMBER
Returns 0

Note

Example
see

GET-PROPERTY
See also

GET-PROPERTY

PUT-PROPERTY

REMOVE-PROPERTY

SAVE-PROPERTY-OBJECT

1.106 SELECT

Execute only one special out of more functions.

Template
(SELECT [num] [fun]*)

Installer 88 / 113

Parameters
[num] - specify the number of function, which should be evaluated

(starting with zero)
[fun] - several functions

Options

Result
Type: depends
Returns the result of the evaluated functions

Note

Example

; writes "zap"
(SELECT 2 (MESSAGE "bla") (MESSAGE "burp") (MESSAGE "zap"))

See also

1.107 SET

Set a value to a variable. If this is the first setting, then this
value will be declared. Access to not initialized variables will
cause a runtime warning and will deliver the number zero.

Template
(SET [[name] [value]]*)

Parameters
[name] - the name of the variable
[value] - the (new) value for this variable

Options

Result
Type: depends
Returns the last setting

Note

Example

See also

1.108 SETENV

{NG}
Sets a system variable. This is only temporary done in the ENV: directory
and the variable will be lost after a reset.

Installer 89 / 113

Template
(SETENV <varname> <value>)

Parameters
<varname> - a string which is the name of the variable
<value> - this string must contain the value for the variable

Options
(RESIDENT) - specify this to write the variable to both, ENV: and

ENVARC: directories (needs v39+ or AmigaOS3.0+)

Result
Type: STRING
Returns <value>

Note
The variable is only temporary set to ENV:

Example

(SET var "MY_TEMP_VARIABLE")
(SETENV var "the value of my temp variable")

See also

GETENV

1.109 SETMEDIA

Modify properties of a media object.

Template
(SETMEDIA [object] [action] [actionparam]{0-1})

Parameters
[object] - the media object identifier; {NG} can be either a

string or an identifier of type STRING
[action] - the action, which has to be performed with the media object ←↩

and
depends on the objects type; valid actions strings are

"pause"
"play"
"contents"
"index"
"retrace"
"browser_prev"
"browser_next"
"command"
"rewind"
"fastforward"
"stop"
"locate"

Installer 90 / 113

[actionparam] - if [action] is "command" or "locate", then this will hold the ←↩
command

string argument

Options

Result
Type: NUMBER
Returns 0

Note

Example
see

SHOWMEDIA
See also

SETMEDIA
,
SHOWMEDIA

1.110 SHIFTLEFT

Bit oriented shifting of a value. Zeros are shifted in on the
opposite side.

Template
(SHIFTLEFT [value] [shiftamount])

Parameters
[value] - the value to be shifted
[shiftamount] - the amount of shifts

Options

Result
Type: NUMBER
The left-shifted [value]

Note

Example

See also

1.111 SHIFTRIGHT

Bit oriented shifting of a value. Zeros are shifted in on the
opposite side.

Template

Installer 91 / 113

(SHIFTRIGHT [value] [shiftamount])

Parameters
[value] - the value to be shifted
[shiftamount] - the amount of shifts

Options

Result
Type: NUMBER
The right-shifted [value]

Note

Example

See also

1.112 SHOWMEDIA

This opens a datatype object (you need at least AmigaOS 3.0 for this)
and presents it to the user. Depending on the type of the media object,
this function can open a custom window to show the file.

Template
(SHOWMEDIA [name] [file] [position] [size] [borderflag] [attr]*)

Parameters
[name] - a string, which specifies the name for this media object; this

will be used by SETMEDIA and CLOSEMEDIA functions later
[file] - the name of the file to show
[position] - if the media object needs a window (e.g. pictures or animations ←↩

)
this defines the (relative) size of the window; valid strings ←↩

are:
"upper_left"
"upper_center"
"upper_right"
"center_left"
"center"
"center_right"
"lower_left"
"lower_center"
"lower_right"

[size] - if the media object needs a window, then this defines the
(relative) size of the window; valid strings are:

"none"
"small"
"small_medium"
"small_large"
"medium"
"medium_small"
"medium_large"
"large"
"large_small"

Installer 92 / 113

"large_medium"
[borderflag] - if set to 1, then the window will have scrollers in its borders ←↩

,
otherwise (i.e. if 0) it gets no borders

[attr] - some attributes, which specify the datatypes attributes, valid
strings are:

"wordwrap"
"panel"
"play"
"repeat"

Options

Result
Type: NUMBER
Returns 1 if the datatype could be opened, 0 otherwise

Note
Every viewer runs as an own process, i.e. you may continue script execution,
while the viewer process shows pictures, anims, AmigaGuides® and so on.

Example

See also

1.113 SHOWWBOBJECT

Makes an arbitrary workbench object visible, i.e. it scrolls the ←↩
view

of a workbench drawer, until the named object becomes visible

Template
(SHOWWBOBJECT [wbobject])

Parameters
[wbobject] - the object to be viewed

Options

Result
Type: NUMBER
Returns 1, if SHOWWBOBJECT succeeded, 0 if the [wbobject] could
not be found, or -1 if the machine (i.e. the Workbench) does not
support this function

Note

Example
see

OPENWBOBJECT
See also

see
SHOWWBOBJECT
,
OPENWBOBJECT

Installer 93 / 113

1.114 SIMULATE-ERROR

{NG}
A runtime error will be simulated. This is very useful for testing and
debugging scripts.

Template
(SIMULATE-ERROR <error>)

Parameters
<error> - a number value which ranges from 1 to 5. The meaning of the

numbers are: 1 - Quit
2 - Out of mem
3 - Error in script
4 - DOS error (@ioerr is set to 236 (←↩

ERROR_NOT_IMPLEMENTED))
5 - Bad parameter data

every other number simulates the "Out of range" error.

Options

Result
Type: NUMBER
Returns <error>

Note
The <error> argument numbers are the same as used by the

TRAP
function.

Example

(ONERROR (
(BEEP)
(MESSAGE "Damn, an error!")

)
)
(SIMULATE-ERROR 2)

...

(SET #err (TRAP 3 (SIMULATE-ERROR 3)
)

)
(IF (= #err 3) (MESSAGE "There was an error in the script..."))

See also

ONERROR
,
TRAP

Installer 94 / 113

1.115 STARTUP

Using this function, you can add commands to the users startup files.
First, the Installer tries to modify the "user-startup" and if this
failes, it creates a new "user-startup" and adds a call to this
"user-startup" file to the "startup-sequence" (but asks for confirmation
befor it writes to the "startup-sequence"). Old modifications of the
application will be replaced by these new ones.

Template
(STARTUP [appname] [option]*)

Parameters
[appname] - The Installer will comment the modifications by noting the

name of the application, which caused the modifications; use
the @app-name variable here

Options
PROMPT
HELP - tell the user what’s going to happen
CONFIRM - if specified, the user will be asked for confirmation
COMMAND - used to declare an AmigaDOS command line, which will be added to

the startup script.

Result
Type: NUMBER
Returns 0

Note

Example

See also

1.116 STRLEN

Calculates the length of a given string, i.e. the number of characters

Template
(STRLEN [string])

Parameters
[string] - the string

Options

Result
Type: NUMBER
Returns the length of the string

Installer 95 / 113

Note

Example

1.117 SUB

Subtract all the parameters

Template
(- [value]+)

Parameters
[value] - the values to be subtracted, starting with the first one

Options

Result
Type: NUMBER
Returns the result of this chain of subtractions

Note

Example

See also

1.118 SUBSTR

Returns a substring of a given string by extracting a part of the string

Template
(SUBSTR [string] [offset] [count]{0-1})

Parameters
[string] - the original string
[offset] - number of the first character of the new substring
[count] - optional; the length of the new substring

Options

Result
Type: STRING
Returns the created substring

Note

Example

(SUBSTR "this is cool, isn’t it?" 8 4) ; returns "cool"

Installer 96 / 113

See also

1.119 SWING

{NG}
This allows you to jump (inside of this block) from one function to its ←↩

neighbour
function. Thus, you may use all the ASK... functions to set the installation
environment AND to have an undo/redo option

Template
(SWING <stmt> ...)

Parameters
<stmt> - one or more functions. SWING will jump between them

Options

Result
Type: number
Returns 0

Note

Example

(SET number 5
text "bla"

)

(SWING
(SET number (ASKNUMBER (PROMPT "Enter a number")

(HELP "...")
(DEFAULT number)

)
)
(SET text (ASKSTRING (PROMPT "Enter a text")

(HELP "...")
(DEFAULT text)

)
)

)

1.120 TACKON

Add a component to an existing path. This function also cares ←↩
for

handling the ":" and "/" delimiters correctly

Template
(TACKON [path] [file])

Installer 97 / 113

Parameters
[path] - the path, which has to be expanded
[file] - the file, which will tacked on

Options

Result
Type: STRING
Returns a new path

Note

Example
see

FOREACH
See also

1.121 TEXTFILE

Creates a new text file from other text files or by strings. This
is useful to create configuration files scripts or environments.

Template
(TEXTFILE [option]*)

Parameters

Options
PROMPT
HELP - tell the user what’s going to happen
CONFIRM - if present, then the user will be asked for confirmation
SAFE - create the file even in "Pretend" mode
APPEND - write this string to the text file
INCLUDE - include the given file into th new text file

Result
Type: NUMBER
Returns 0

Note

Example

See also

1.122 TOOLTYPE

Modify the tooltypes of an existing tool. I.e. you can set,
change and delete tooltypes and the related values.

Installer 98 / 113

Template
(TOOLTYPE [option]*)

Parameters

Options
PROMPT
HELP - tell the user what’s going to happen
CONFIRM - if specified, the user will be asked for confirmation
SAFE - modify even in "Pretend" mode
DEST - the name of the icon to be modified; there is no need

to spevify e ".info" extension
SETTOOLTYPE - the tooltype name and its value string
SETDEFAULTTOOL - specify the default tool for the icon
SETSTACK - the stack value
NOPOSITION - clear the position of the icon
SETPOSITION - two numbers to specify the position for the icon
SWAPCOLORS - <obsolete, ignored>

Result
Type: NUMBER
Return 0

Note

Example

(TOOLTYPE "InstallerNG"
(SETSTACK 50000)
(NOPOSITION)
(SETTOOLTYPE "MINUSER") ; remove the MINUSER tooltype
(SETTOOLTYPE "DEFUSER" "AVERAGE") ; set the DEFUSER=AVERAGE ←↩

tooltype
(SETTOOLTYPE "ALWAYSCONFIRM" "") ; specify the ALWAYSCONFIRM

)

See also

1.123 TRACE

Set a "Tracepoint" somewhere in the code. Use the function ←↩
RETRACE or BACK

to jump to this point. You are allowed to set as many tracepoints as you want.

Template
(TRACE)

Parameters

Options

Result
Type: NUMBER
Returns 0 (zero)

Installer 99 / 113

Note

Example
see

RETRACE
See also

RETRACE

BACK

1.124 TRANSCRIPT

Write some text to the logfile.

Template
(TRANSCRIPT [string]*)

Parameters
[string] - the strings to write to the log. All strings will be concatenated

and appended by a linefeed.

Options

Result
Type: STRING
Returns the written text

Note

Example

See also

1.125 TRAP

Used for catching errors. Works much like C "longset" function, i.e. when
an error occurs while interpreting the functions inside of the TRAP, control
is passed to the function rights after TRAP.
[flags] determine which errors are trapped. The trap function itself
returns the error type or zero if no error occurred.

Template
(TRAP [flags] [fun]*)

Parameters
[flags] - specify the error, which should be catched; valid error codes

are 1 - user abort
2 - out of memory
3 - error in script

Installer 100 / 113

4 - DOS error
5 - bad parameter data

[fun] - the functions, which are interpreted inside of the TRAP

Options

Result
Type: NUMBER
Returns the error code itself or zero, if no error occured.

Note

Example

; #errcode holds 1 in case of an error or 0, if no error occured
(SET #errcode (TRAP 1 (/* do anything here, what should be trapped */))) {NG ←↩

}

See also

1.126 UNTIL

n ←↩

A list of functions will be executed until the condition holds (or: while
this condition does not hold)

Template
(UNTIL [condition] [fun]*)

Parameters
[condition] - a boolean expression
[fun] - a list of functions which are executed as long as [condition] is ←↩

FALSE
(or until [condition] is TRUE)

Options

Result
Type: depends
Returns the result of the last function

Note

Example

(SET i 5) ; set a variable i to value 5
(UNTIL (= i 0) ; check whether i equals to zero

(; if i doesnt equal to zero then:
(MESSAGE "i = " i) ; - print the value of i
(SET i (- i 1)) ; - decrement i with 1

)
)

Installer 101 / 113

See also

1.127 USER

Change the user mode. You must not SET the @user variable - use USER
for this.

Template
(USER [level])

Parameters
[level] - the new user level. Must be either 0 (or "novice"), 1 (or

"average") or 2 (or "expert")

Options

Result
Type: NUMBER
Returns [level]

Note

Example

See also

1.128 WELCOME

Use this function to show the Welcome panel of the Installer. If the
Installer cannot find WELCOME in your script, it pretends that its
first function is WELCOME and, thus, initially shows the Welcome panel.

Whithin the Welcome panel you select the User mode (Novice, Average or
Expert) and set the Logfile, the installation mode (Real or Pretend)
and with the InstallerNG you can also set advanced features.

In addition, WELCOME sets the @user-level and @pretend variables.

Template
(WELCOME [string]*)

Parameters
[string] - The string arguments are prepended to the standard help text

for whichever of the two initial displays appears first

Options

Result
Type: STRING
Returns the concatenated strings

Installer 102 / 113

Note

Example

See also

1.129 WHILE

Execute a list of functions as long as a condition holds.

Template
(WHILE [condition] [fun])

Parameters
[condition] - a boolean expression
[fun] - a list of functions which are executed as long as [condition] is ←↩

TRUE

Options

Result
Type: depends
Returns the result of the last function

Note

Example

(SET i 5) ; set a variable i to value 5
(WHILE (> i 0) ; check whether i is greater then zero

(; if i is greater than zero then:
(MESSAGE "i = " i) ; - print the value of i
(SET i (- i 1)) ; - decrement i with 1

)
)

See also

1.130 WORKING

The strings will be concatenated to form a message which will appear
below a standard line that reads "Working on Installation". Useful if
you are doing a long operation other than file copying (which has its
own status display).

Template
(WORKING [string]*)

Parameters
[string] - the strings for the working text

Installer 103 / 113

Options

Result
Type: STRING
Returns the text

Note

Example

See also

1.131 XOR

The logical "xor", i.e. XOR deliveres true if exactly one argument is true.

Template
(XOR [value1] [value2])

Parameters
[value1]
[value2] - the values which should logically be tested

Options

Result
Type: NUMBER
Returns 1 for true and 0 for false

Note

Example

See also

1.132 ALL

Template

Parameters

Options

Result

Note

Example

Installer 104 / 113

1.133 APPEND

Template

Parameters

Options

Result

Note

Example

1.134 ASSIGNS

Template

Parameters

Options

Result

Note

Example

1.135 BACK

Template

Parameters

Options

Result

Note

Example

See also

1.136 CHOICES

Installer 105 / 113

Template

Parameters

Options

Result

Note

Example

1.137 COMMAND

Template

Parameters

Options

Result

Note

Example

1.138 CONFIRM

Template

Parameters

Options

Result

Note

Example

1.139 DEFAULT

Template

Parameters

Installer 106 / 113

Options

Result

Note

Example

1.140 DELOPTS

Template

Parameters

Options

Result

Note

Example

1.141 DEST

Template

Parameters

Options

Result

Note

Example

1.142 DISK

Template

Parameters

Options

Result

Note

Installer 107 / 113

Example

1.143 FILES

Template

Parameters

Options

Result

Note

Example

1.144 FONTS

Template

Parameters

Options

Result

Note

Example

1.145 HELP

Template

Parameters

Options

Result

Note

Example

Installer 108 / 113

1.146 INCLUDE

Template

Parameters

Options

Result

Note

Example

1.147 INFOS

Template

Parameters

Options

Result

Note

Example

1.148 NEWNAME

Template

Parameters

Options

Result

Note

Example

1.149 NEWPATH

Template

Installer 109 / 113

Parameters

Options

Result

Note

Example

1.150 NOGAUGE

Template

Parameters

Options

Result

Note

Example

1.151 NOPOSITION

Template

Parameters

Options

Result

Note

Example

1.152 NOREQ

Template

Parameters

Options

Result

Installer 110 / 113

Note

Example

1.153 OPTIONAL

Template

Parameters

Options

Result

Note

Example

1.154 PATTERN

Template

Parameters

Options

Result

Note

Example

1.155 PROMPT

Template

Parameters

Options

Result

Note

Example

Installer 111 / 113

1.156 QUIET

Template

Parameters

Options

Result

Note

Example

1.157 RANGE

Template

Parameters

Options

Result

Note

Example

1.158 SAFE

Template

Parameters

Options

Result

Note

Example

1.159 SETTOOLTYPE

Template

Installer 112 / 113

Parameters

Options

Result

Note

Example

1.160 SETDEFAULTTOOL

Template

Parameters

Options

Result

Note

Example

1.161 SETSTACK

Template

Parameters

Options

Result

Note

Example

1.162 SOURCE

Template

Parameters

Options

Result

Installer 113 / 113

Note

Example

1.163 SWAPCOLORS

Template

Parameters

Options

Result

Note

Example

	Installer
	The Installer Language Programming Guide
	Introduction
	That`s me ;)
	C= Installer vs. InstallerNG
	Versions if the Installer
	The installation of the Installer
	What's new for the InstallerNG
	'Hello World' - the first working program
	The language - an overview
	How can I start the Installer
	Running from Shell/CLI
	Running from WB
	The types of the Installer
	The Errors
	The Installer Language
	The symbols of the language
	The layout of the language
	Builtin variables
	Builtin functions
	Advanced features
	Some theoretical stuff
	Very important notes!!!
	All functions in alphabetical order
	ABORT
	ADD
	AND
	ASKDIR
	ASKFILE
	ASKSTRING
	ASKNUMBER
	ASKCHOICE
	ASKOPTIONS
	ASKBOOL
	ASKDISK
	BEEP
	BITAND
	BITOR
	BITXOR
	BITNOT
	CAST-INT
	CAST-STRING
	CAT
	CLOSEMEDIA
	CLOSEWBOBJECT
	COMPARE
	COMPLETE
	COPYFILES
	COPYLIB
	DATABASE
	DEBUG
	DELAY
	DELETE
	DIV
	EARLIER
	EFFECT
	EQU
	EXECUTE
	EXIT
	EXISTS
	EXPANDPATH
	FILEONLY
	FINDBOARD
	FLUSHLIBS
	FOREACH
	GE
	GETASSIGN
	GETDEVICE
	GETDISKSPACE
	GETENV
	GET-PROPERTY
	GETSIZE
	GETSUM
	GETVERSION
	GT
	ICONINFO
	IF
	IN
	LE
	LET
	LT
	MAKEASSIGN
	MAKEDIR
	MESSAGE
	MUL
	NE
	NOP
	NOT
	ONERROR
	OR
	OPENWBOBJECT
	PATHONLY
	PATMATCH
	PROCEDURE
	PROTECT
	PUT-PROPERTY
	QUERYDISPLAY
	RANDOM
	READ-PROPERTY-OBJECT
	REBOOT
	REMOVE-PROPERTY
	RENAME
	RETRACE
	REXX
	RUN
	SAVE-PROPERTY-OBJECT
	SELECT
	SET
	SETENV
	SETMEDIA
	SHIFTLEFT
	SHIFTRIGHT
	SHOWMEDIA
	SHOWWBOBJECT
	SIMULATE-ERROR
	STARTUP
	STRLEN
	SUB
	SUBSTR
	SWING
	TACKON
	TEXTFILE
	TOOLTYPE
	TRACE
	TRANSCRIPT
	TRAP
	UNTIL
	USER
	WELCOME
	WHILE
	WORKING
	XOR
	ALL
	APPEND
	ASSIGNS
	BACK
	CHOICES
	COMMAND
	CONFIRM
	DEFAULT
	DELOPTS
	DEST
	DISK
	FILES
	FONTS
	HELP
	INCLUDE
	INFOS
	NEWNAME
	NEWPATH
	NOGAUGE
	NOPOSITION
	NOREQ
	OPTIONAL
	PATTERN
	PROMPT
	QUIET
	RANGE
	SAFE
	SETTOOLTYPE
	SETDEFAULTTOOL
	SETSTACK
	SOURCE
	SWAPCOLORS

